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A new methodology for solving the inverse problems for the physical inference from multivariate measurements 
made by large astroparticle physics experiments is described; examples of implementations are presented, physical 
inferences discussed. From the distributions of secondary electrons, positrons gamma rays, muons, and hadrons we 
should recover the primary particle type, energy, and for neutral particles, also coming direction. Due to numerous 
random fluctuations and methodical errors, as well as, uncertainties in the simulations (the cosmic ray energies 
surpass the collider energies by several orders of magnitude), this problem is extremely difficult to solve. We describe 
a scheme for solving such problems, that comprises multiple solving of direct problem of cosmic rays (simulations 
with known parameters of the primary hadron) and implementation of Bayesian and Neural Net models for final 
statistical inference on the type and energy of each particle, and as well on the “correct” model from a set of 
alternative explanations. 
Thus, the book describes a unified methodology of the data analysis in the framework of Neural Network statistical 
models and big data concept, using advanced nonparametric techniques in order to be able to address reliably the 
most difficult and most important problem of high energy astroparticle physics data analysis - event by event analysis 
of CR interactions, determination of the type and energy of each primary nucleus, initiated cascade process in the 
atmosphere and detected by surface detectors (WHIPPLE and MAGIC imaging air telescope, MAKET ANI, 
KASCADE surface arrays).  
As well will be presented new approaches for big data analysis from the LHC experiments. 
Several methods and techniques were proposed, developed, and implemented in Neural Information technologies to 
control the learning from examples, to gain the high efficiency and speed of Neural classification and estimation 
procedures, to estimate the method performance, and to stabilize the obtained results. 
Procedures invoking the Cross-Validation, Evolutionary training, Hardware Neural accelerator were implemented, in 
order to obtain stable, fast, and reliable results on the general nature of the investigated phenomenon, rather than the 
particular (maybe spurious) solution of the problem overfitted to the data on hand. 
The handling of EAS simulated data proves, that the proposed methodology allows determining with ~ 70% 
efficiency the type of the primary and to estimate its energy with ~ 25% relative error, in this way allowing first time 
to obtain energetic spectra of three species of Cosmic Ray flux. Also, the world-best results were obtained 
implementing our methods for background rejection in very high-energy astrophysics with IASTs. 
The developed methods are universal and can be used for high-energy physics data analysis as well, as for other real-
life applications. All methods are integrated with the ANI (analysis and nonparametric inference) package that will be 
available to readers of the book (user manual, description of input and output information). 
 
Keywords: Neural Networks, Big data, Machine learning, Nonparametric methods, High Energy Cosmic Ray 
Physics, Monte Carlo Statistical Inference, Applied Programming, Software-Hardware Combined System 
Development, Trigger Applications, Multivariate Data Analysis, Learning Algorithms. 
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INTRODUCTION 

Problems of Data Analysis in Cosmic Ray Physics Experiments. 

The observational evidence for the existence of very high energy Cosmic Ray (CR) point 
sources has reanimated the substantial interest in CR physics and initiated construction of very 
large experimental complexes. Arrays of particle detectors covering a large area are measuring 
different characteristics of numerous secondary products of the Primary CR (PCR) interactions 
with the atmosphere. Only a simultaneous measurement of a large number of independent 
characteristics in each individual Extensive Air Shower (EAS) can yield reliable information to 
reconstruct the primary particle origin and its energetic characteristics as well as the peculiarities 
of strong interaction at the top of atmosphere. 

The ambiguity of interpretation of the results of experiments with cosmic rays is connected 
with both significant gaps in our knowledge of the parameters of hadron-nuclear interactions at 
super accelerator energies and indefiniteness of the primary cosmic ray composition, as well as 
with strong fluctuations of all shower characteristics. The extra difficulties are due to indirect 
experiments and hence, due to the use of Monte – Carlo simulations of development and 
detection of different components of nuclear electromagnetic cascades. 

To make the conclusions about the investigated physical phenomenon more reliable and 
significant, it is necessary to develop a unified theory of statistical inference, based on 
nonparametric models, in which various statistical approaches (density estimation, Bayesian 
decision making, error rate estimation, feature extraction, sample control during handling, neural 
net models, etc.) would be used. 

The most important part of the present approach is the quantitative comparison of 
multivariate distributions and use of a nonparametric technique to estimate the probability 
density in the multidimensional feature space. As compared to the earlier used methods of 
inverse problem solution, in this work the object of analysis is each particular event (a point in 
the multivariate space of measured parameters) rather than alternative distributions of model and 
experimental data. That is why, along with the averaged characteristics, the belonging of each 
event to a certain class is determined (statistical decision problem). 

This approach was first used to estimate the upper limit of the iron nuclei fraction according 
to the γ – family characteristics, registered by PAMIR experiment (Chilingarian et al., 1987). 
Our results confirm the normal composition hypothesis and reject the hypothesis of dominance 
of iron nuclei in PCR at E > 10 PeV. 

The handling of EAS simulation data proves that the methodology allows us: 
• to determine with ~ 70% efficiency the type of the primary and to estimate its energy  

with an accuracy of ~ 25% (Aglietta et al. 1999); 
• to investigate the possibility of selecting mononuclear CR beams from experimental data 

using characteristics of the electron – photon and the muon components of EAS, and 
further comparison of such beams with alternative simulations. These results give us 
hope that the study of the parameters of p — A and A — A interactions in the energy 
range 1-10 PeV is possible. 
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Statistical Inference in Cosmic Ray Physics. 

The most difficult and most important part of high energy physics data analysis is the 
comparison of competitive hypotheses and decision making on the nature of the investigated 
physical phenomenon. 

In the cosmic ray physics the main technique of statistical inference connected with the 
problem of determination of initial physical parameters (such as mass composition and energy 
spectrum of PCR, strong interaction parameters, flux of very high energy 7-quanta from point 
sources, etc.), - is the indirect problem solution with detailed simulation of the cosmic ray 
traversal through the atmosphere and the experimental installation with a following comparison 
of the multivariate simulation and experimental data. Actually, an algorithm is constructed, 
which describes EAS development and registration of its different components on the 
observation level, which is based on a certain model of the process investigated, i.e. the set of 
the parameters that characterize the PCR flux and interaction of hadrons and nuclei and γ-quanta 
with the air nuclei. 

By simulations with different models and comparing the experimental and model data, a 
class of models is selected, which describe the experimental data satisfactorily. 

For almost all problems of inference, the crucial question is: whether the fitted probability 
family is in fact consistent with data? Usually parametric models are chosen for their statistical 
tractability, rather than for their appropriateness to the real process being studied. Of course, any 
statistical inference is conditioned on the model used, and, if the model is oversimplified, so that 
essential details are ever omitted, or improperly defined, at best only qualitative conclusions 
may be done. Now, in cosmic ray and accelerator physics very sophisticated models are used, 
completely mimicked a stochastic mechanism whereby data are generated. Such models are 
defined on a more fundamental level than parametric models, and provide us with a wide range 
of outcomes from identical input variable sets, so-called, "labeled", or "training" samples (TS). 
These sets of events with known membership represent the general - nonparametric mode of a 
priori information. Though simulation in data analysis in high energy physics is widely used, we 
can aware of a very few systematic investigations of theoretical aspects about how data may be 
compared with their simulated counterpart. 

What we need is a well defined technique, that one can call Monte-Carlo Statistical 
Inference (MCSI). The presented approach considers the classification and hypothesis testing 
problems in the framework of Bayesian paradigm and the main steps of the unified data analysis 
methodology areas following. 
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CHAPTER 1.  
MONTE-CARLO STATISTICAL INFERENCE 

1.1 NONPARAMETRIC  INFERENCE 

The scientific method is characterized by data classification, the study of their interrelations 
and relations to past experience, accumulated in various theories and hypotheses. Usually, it is 
impossible either to prove or to refuse hypotheses by deductive method. The challenge is to 
draw sensible conclusions from noisy, discrepant information. 

The main aspect of statistics is the collection and interpretation of data, the interpretative 
aspect being the one that is now regarded as the essence of the subject (Lederman, 1984). The 
fundamental idea of statistics is that useful information can be obtained from individual small 
bits of data. An inductive method leads to empirical statements that may be connected with 
theoretical ones by means of rational inductive conclusion rules (Hajek et al., 1979). 

The most natural and most general framework in which to formulate solutions to the 
physical inference in CR physics is the statistical one, which recognizes the probability nature 
both of the physical processes of propagation of cosmic radiation through the atmosphere and 
the detectors, and - of the form in which data analysis results should be expressed. 

However, it is very important to provide the scientist with objective criterion by which to 
judge the claims of hypotheses (models) under investigation (problem solving strategy). By 
model we mean a complete probability statement of what currently supposed to be known a 
priori about the mode of generation of data and of uncertainty about the parameters (Box, 1984). 

If this statement consists in the existence of an analytic distribution family, (like Poisson or 
Gaussian), appropriate to the problem in hand, we have prescribed parametric model. For such 
parametric models a well-known concept of statistical inference consists in obtaining estimates 
of its parameters and verifying the validity of a chosen family (Eadie et al., 1971). In the CR 
physics the main technique of physical analysis is the Monte-Carlo Statistical Inference (MCSI), 
the detailed simulation of the CR traversal through the atmosphere and the experimental 
installation with a following comparison of the multivariate simulation and experimental data. 
Actually, an algorithm is constructed, which describes the EAS development and registration of 
its different components on the observation level, which is based on a certain family of models 
of the physical processes investigated. 

MCSI is a process. It takes requirements specification (basic physics, experimental 
techniques, data analysis techniques), it generates families of models to meet this spec- ifications 
and it synthesizes a priori knowledge and experimental results to create new knowledge. 

Complexity of the MCSI is determined by its multifunctionality, adaptability and flexibility 
Herein lies MCSI flexibility. It allows the input vectors to be formed directly from initial 
measurements or from reconstructed EAS parameters. 

MCSI incorporates and uses such advanced nonparametric methods as Nonparametric 
Boundary Analysis, Adaptive Multivariate Density Estimation, Fractal Dimensionality Analysis, 
Artificial Neural Networks, etc. 

The detailed proposals to use MCSI in Astroparticle Physics experiments were performed by 
A.Chilingarian and H.Zazyan in early 90-s (Chilingarian et al., 1991) for planned ANI 
experiment (ANI Collaboration, 1992). The main idea of the project was to use advanced 
multivariate statistical methods (Chilingarian, 1989) to perform event-by-event (or shower-by-
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shower) analysis of EAS data and for the first time present CR physics experimental data with 
precision and reliability comparable with accelerator physics experiments (Chilingarian 1991A). 
 

1.2 PARAMETRIC  CLASSIFICATION 

The classification problem in parametric case (Newman-Pearson test) is traditionally 
described in terms of null and alternative hypothesis, critical and acceptance regions and level of 
significance (Zacks, 1977). The "best" critical region (the region of rejection of the null 
hypothesis) is constructed by means of the Likelihood Ratio (LR): 

𝐿𝑅(𝑣) = '((/*+)
'((/*,)

                          (1.1) 

each of two classes is defined by values of ψi - the parameter of a prechosen analytic probability 
density function, v is a multivariate observation vector (point in multidimensional feature space) 
p(v/ψ1), (v/ψ2) - are conditional probability density functions describing distinct, mutually 
exclusive (non overlapping) and full  p(v/ψ1)+ p(v/ψ2)=1 statements (null and alternate 
hypothesis). 

The threshold value reflects the costs of consequences of statistical decision. Usually one 
selects this value to keep on some constant minimal level error for one class, while maintaining 
to minimize the error of the other class. 

For the L class case the  p (ψ) - will be chosen as a "true" class 
 

𝜓 = 𝑎𝑟𝑔𝑚𝑎𝑥*3𝑝(𝑣/𝜓5),    i = l , . . .L .     (1.2) 

If ψ takes infinite number of values from some metric space Ψ then we deal with an 
estimation problem and the Maximal Likelihood Estimate (MLE) is asymptotically unbiased and 
effective 

𝜓678 = argmax*>ln𝑓(𝑣5/𝜓), 𝜓 ⊂ Ψ.
6
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                   (1.3) 
where {𝑣5}, 𝑖 = 1,𝑀 are the experimental events. The parametric estimation uses whole  experi-
mental sample set, instead of only one event in the classification problem, with the benefit of 
solving regression problem (parameter estimation) for all possible experimental situations.  

The analytical function 𝑓(𝑣/𝜓678) ≡ 𝑓(𝑣) can be used for energy estimation, of 
course if the shape of particular functional family f(•) is known.  

Although the results of analysis using parametric statistics usually are easy to present and 
understandable, it is very important to remember that any inferential conclusion based on 
parametric technique is not exactly valid unless every assumption is satisfied. 

If these assumptions cannot be substantiated, or are discarded, or are not even known to the 
investigator, then the inference may be less reliable than a judicious opinion, or even arbitrary 
guess (Edwards et al, 1984). 

The parametric methods superimpose very restrictive assumptions on the nature of the 
population from which the sample is drawn. For example, the assumption of a normal 
distribution implies a continuous, symmetric, bell shaped distribution with infinite domain and a 
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specific mathematical function. And statistical inference is exact for these sampling distributions 
only and may not even be close to the obtained one, if the population assumption comes to be 
incorrect. 
 

 

Figure 1. Monte-Carlo Simulation Procedure 

1.3 NONPARAMETRIC CLASSIFICATION 
Usually, for experimental physics data analysis, the Likelihood Function cannot be written 

explicitly, and we deal with implicit, nonparametric models, for which no parametric form of 
underlying distribution is known, or can be assumed. 

Nonparametric methods use much less stringent assumptions about population than those 
made in parametric statistics. Usually the underlying population distribution is assumed to be 
continuous only. Of course this assumption is rather mild comparing with the very specific 
assumptions made in parametric case. 

Let us consider the stochastic mechanism (𝐴, 𝑃) which generates the observations v in a 
multivariate feature space - 𝑣, v is a d-dimensional vector of EAS parameters measured 
experimentally. We assume that observations are random and can be described by some 
conditional probability density function depending on the primary particle type. The feature 
space 𝑣 covers possible acceptable values of EAS parameters including cuts on age and Ne 
parameter, etc. . .  

The basic states space A consists of alternative models or classes (the alternative strong 
interaction models, or - different primary nuclei). The appropriate statistical model to describe 
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this situation is the probability mixture model: 

𝑝(𝑣) = >𝑃P𝑝(𝑣/𝐴P)
7

PFG

 

                                  (1.4) 
 

And the main problem in EAS physics is to determine the proportions (frequencies) 𝑃P of 
events in each category Ak. 

We don't know also the full statistical description (conditional probability density 
functions 𝑝(𝑣/𝐴P)of how nature produces EAS from incident particles, nor the possibility 
to use particle beams outside the atmosphere to calibrate the installations, that is why, to 
determine the mutual probability measure on the direct product of 𝐴 and 𝑣 spaces the total 
Monte-Carlo simulation of the EAS development in the atmosphere and in detectors is 
performed, including experimental data registration and handling for alternative primary 
particles and possible strong interaction models in a wide energy range. 

The problem is how to assign the probability measure in the primary particle param-
eters space 𝐼 (L-dimensional metric space). Usually the following parameters are used as 
inputs for a Monte-Carlo simulation program: 

• the primary type;  

• the primary energy; 
• the angle of incident; 
• the strong interaction mode (one of the several strong interaction models) . 

As will be shown further, the initial probability measure on 𝐼 will be modified by 
experimental information in accordance with Bayesian paradigm. Experimental evidence will 
change possibly incorrect assigned initial probability measure, therefore, we can take uniform 
measure for most of simulation parameters. Of course, we have to outline the physical restriction 
and define the bounded subspace of 𝐼, from which we will take randomly uniform (or according 
to some established already in previous experiments distribution function) (ti ,i = 1, M ), where 
M is the number of simulation trials)  values. 

For the classification task among  M(ti) values there will be many same values-class 
"labels". The primary particle classes will be restricted by 5 groups, including all primaries from 
proton to iron. Therefore, some of one-dimensional projections of the 𝐼 space will be discreet. 

The set of corresponding d-dimensional  ui ,i = 1,      M  vectors obtained from simulations is 
an 
analog of the experimentally measured values of vi ,i = 1, Mexp  where Mexp  is the number of  
detected events. But, as opposed to experimental data, it is exactly known which primary particle 
was used in simulations. 

These labeled events include a priori information about dynamics of the EAS development 
and registration with inherent fluctuations. All statistical variability of events belonging to the 
definite class is given in a nonparametric form, in form of simulation trials. 

The sequence (ui ,tj ), where i = 1, Mj , j = 1, L,  t — is the class index, is generated by a 
detailed Monte-Carlo simulation program and consists of L classes each containing Mj 
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simulation trials. 
This "controlled" stochastic mechanism we denote by R𝐴, 𝑃ST and name training sample 

(TS). The training sample is the basis of all statistical procedures in applied Bayesian and neural 
approaches. Usually we denote a TS by Ak or explicitly by the primary group - p, O, ... ,Fe. 

 The corresponding distribution mixture model takes the form: 

�̂�(𝑣) = >𝑃VP�̂�(𝑣/𝐴P)
7
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                                                                                        (1.5) 
Of course this substitution of unknown conditional densities p(v/Ak) by their "simu-

lation" analog �̂�(𝑣/𝐴P), estimated by means of training sample {ui, tj}, is only valid if the used 
model is adequate. And validation of the model remains the most crucial and yet 
unsolved problem for EAS data analysis. 

 Of course, for reliable estimation of conditional densities we'll need significant amount of 
training trials to cover all intrinsic variations of measurable EAS parameters and completely 
represent all categories (primary nuclei). 

Since both physical processes of particle production and those of registration are stochastic, 
only by careful measurement of probabilities we can gain an understanding of the EAS 
phenomena. We can't expect simple solutions, as multidimensional distributions of EAS 
parameters overlap significantly and any decision on primary particle type and its energy will 
contain uncertainty. 

The only thing we can require when classifying a distribution mixture is to minimize the 
losses due to incorrect classification to some degree and to ensure use of a priori information 
completely. Such a procedure is the Bayes decision rule with nonparametric estimation of the 
multivariate probability density function. 
 
1.3.1 BAYESIAN  PARADIGM 

The Bayesian approach of the statistical inference is a modification of the opinions of 
consistent experts (a priori knowledge) in the light of new evidence and the Bayes theorem 
specifies how such modification should be made. 

Moreover, as we believe, Bayesian a posteriori measures are only trustworthy and sensible 
measures of how the uncertainty about the phenomenon under investigation should be modified 
after new experimental data are achieved (Berger, 1984). 

The Bayesian approach formalizes the account of all the losses connected with probable 
misclassification and utilizes all the differences of alternative classes (Lindley, 1978). The 
decision problem in the Bayesian approach is simply described in terms of the following 
probability measures defined on the metric spaces: 

• The space of possible states of nature 𝐴 ≡ (𝑝, 𝛼, 𝑂, 𝑁, 𝐹𝑒) - groups of primary 
nuclei; 

• The space of possible statistical decisions 𝐴\ ≡ (𝑝], 𝛼], 𝑂S, �̂�, 𝐹S𝑒)where 𝑝], . . . 𝐹S𝑒 are 
the decisions that the examined event is caused by a primary proton, or. . . , iron 
nuclei; 

• Cost (losse) measure 𝑐` S̀, or 𝑐 3`a, or in simple notion 𝐶5c. This measure is defined on 
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the direct product of nature states and decision spaces (𝐴 ⊗ 𝐴\).  All losses, 
connected with definite statistical decision Aו are equal to 

𝑐5c =>𝑐5c,

7
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i, j = 1, L 

                                                                                     (1.6) 
At correct classification of primary particles into "proton" and "iron" classes the losses are 

equal to zero: 
𝑐hihSi = 𝑐''] = 0                                               (1.7) 

or for problem of background rejection in TeV γ-ray astronomy 

𝑐kkl = 𝑐mm̂ = 0                                            (1.8) 

If we misclassify the signal event, we decrease the efficiency of γ -event registration. If we 
attribute hadronic images to γ -ray ones, we increase the background contamination. As we 
expect a significant excess of background against signal, we are interested in a strong 
background rejection. So, it is therefore reasonable to take the non symmetric loss function for 
this case 

𝑐km̂ = 0.9, 𝑐mkl = 0.1.                               (1.9) 

For elemental composition studies one can take uniform a priori losses function 

Cp = Cα = CO =CN = CFe = 0.2                         (1.10) 
 

• Event (measurement, feature) space V - a set of measurable characteristics of EAS, 
Cherenkov image parameters etc. 

•  The prior measure PA  ≡ (Pp , PFe ...). 
• Conditional densities (Likelihood functions): 

{�̂�(𝑣/𝑝), {�̂�(𝑣/𝛼), {�̂�(𝑣/𝑂), . . . }.               (1.11) 

These density functions are estimated by means of training samples obtained in simulation 
trials with different primaries. 

Multivariate probability density estimation is a fundamental problem in data analysis, 
pattern recognition and artificial intelligence. The estimation of the conditional density on the 
basis of the collection of simulations is also a key problem in high energy CR  physics. 

1.3.2 BAYESIAN DECISION RULES 
The Nonparametric Bayesian decision rule takes the  form 

𝐴\ = 𝜂(𝑣, 𝐴, 𝑃S) = argmax5{𝐶5�̂�(𝐴5/𝑣)}, i = 1, . . . , L. (1.12) 

where Ci is the losses connected with 𝐴\ decision, �̂�(𝐴5/𝑣) are the nonparametric estimates of 
the a posteriori density, connected with conditional ones by Bayes theorem: 
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                                  𝑝](𝐴5/𝑣) =
pV3'q((/`3)
'q(()

.                                             (1.13) 

And finally, substituting the a posteriori densities by the conditional ones we get the 
Bayesian decision rule in the form 

𝐴S = argmax5{𝐶5𝑃5𝑝q(𝑣/𝐴5)}, i = 1, . . . , L.                       (1.14) 

As one can easily see from above formulae, the Bayesian statistical decision is de-
pendent on multiplicator Ci Pi therefore we can't separate the influence of losses (cost) 
measure and prior measure on decision made. Changes in losses can be compensated by 
changes in prior to keep constant the Bayesian decisions. 

The robust Bayesian inference claims that after considering repeated evidence, the initial 
used prior distribution can't influence the a posteriori distribution heavily (Berger, 1984). 

So, the choice of prior distribution isn't of critical importance for fraction estimation, 
because of the very big volumes of experimental data overwhelming the initial prior knowledge. 

For the investigation of the influence of the chosen value of the a priori losses on the 
classification results, the statistical decision are made simultaneously for different alternative 
variants of a priori losses. Examining the, so called, "influence curves" obtained with different 
losses one can select the preferable regime of estimator operation. For example, it is possible to 
select the desired ratio of background rejection and signal detection efficiency. 

A provision is required to avoid the statistical decision if all classes are very far from 
experimental events (outliers problem). If 

 
�̂�(𝑣/𝐴5) < 𝑆𝑇𝑓𝑜𝑟𝑎𝑙𝑙𝑖 = 1, . . . 𝐿,                     (1.15) 

then the decision will not be made. ST is so called, Strangeness criteria, usually set to 
very small number; conditional densities are estimated by the 𝑇𝑆(𝐴, 𝑃S) using one of many 
nonparametric methods available, L is the number of classes.                             

 The Nonparametric Likelihood Ratio for classes A1 , A2  and experimental event v can 
be represented as 

                      𝐿𝑅(𝑣) = 'q((/`+)
'q((/`,)

                         (1.16) 

Usually for comparison purposes we'll use the sampling mean of Log Likelihood ratio. 
The nonparametric Log-likelihood function for k -th class has the form: 

𝐿P = ∑ ln�̂�(𝑣5/𝐴P),6
5FG            k=1,L,                      (1.17) 

1.3.3  NONPARAMETRIC  PROBABILITY  DENSITY  ESTIMATORS 
To estimate conditional densities, we used Parzen and KNN methods (Devroye et al., 

1985), (Rosenblatt, 1957), (Parzen, 1962), (Fix et al., 1951), (Lofsgaarden et al, 1966), 
(Mahalonobis, 1936), (Tapia et al., 1978), (Fukunaga et al., 1987), (Rabiner et al., 1974) with 
automatic parameter (kernel width - for Parzen estimate, and number of neighbor - for KNN 
estimate) adaptation (Chilingarian et al., 1984). 
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Several probability density values corresponding to different values of parameters are 
calculated simultaneously. Then the obtain sequence is ordered and the median of this sequence 
is chosen as final estimate (so called L-estimate). Depending on the intrinsic probability density 
in the vicinity of point v, where the density is estimated, due to stabilizing properties of the 
median, each time the best estimate will be chosen [38]. 

The Parzen kernel probability density is estimated by: 

�̂�(𝑣/𝐴5) =
|Σ5|z{.|

(2𝜋)�/�ℎ�
>𝑒z�a

,/�m,𝜔c,
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𝑖 = 1, . . . , 𝐿,>𝜔c = 1
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                                (1.18) 

where d is the feature space dimensionality, Mi is the number of events in the i— th TS, rj is 
the distance from experimental event v to the j— th event of the TS in the Mahalanobis 
metric: 

𝑟c� = (𝑣 − 𝑢c)�> (𝑣 − 𝑢c)
zG

5
 

                                               
                  (1.19) 

where ∑i is the sampling covariance matrix of the class to which uj belongs, wj are the event 
weights, h is the kernel width (parameter controlling the degree of the "smoothness" of an 
estimate) . 

The K nearest neighbors estimate (equal weights only are accepted) takes the form 

�̂�(𝑣/𝐴5) =
𝑘 − 1
𝑀5𝑉P(𝑣)

 

                                                          (1.20) 

where Vk(v) is the volume of a  (d-dimensional hypersphere containing the k nearest neighbors 
to the experimental event v: 

𝑉P(𝑣) = 𝑉�|Σ5|G/�𝑟P�, 𝑉� =
𝜋�/�

Γ(d/2 + 1)
, 𝑖 = 1, 𝐿, 

                                                                                          (1.21) 

where rk is the distance to the k-th nearest neighbor of v, Ã(.) is the Gamma function. |∑i | is the 
determinant of the covariance matrix of the class to which the K-th neighbor belongs. 
 
 
1.3.4  BAYES  ERROR  ESTIMATION 
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The classification methods, like all the other statistical methods, include a procedure 
quality test as a necessary element. This stage is also necessary for the determination of the 
frequencies of the probability mixture (1.5). 

The most natural measure for quality test is the error probability which depends on both the 
degree of overlapping of alternative multivariate distributions and the decision rule being used 
(Bayes decision rule provides minimal error as compared to any other decision rule using 
the same features): 

 

𝑅� = 𝐸{𝜃[𝜂(𝑣, 𝐴, 𝑃)]} = ∫𝜃𝑝(𝑣)𝑑𝑣                            (1.22) 
Where 

𝜃[𝜂(𝑣, 𝐴, 𝑃)] �0, for	correct	classification1, other	wise  
                                                                                                           (1.23) 

where 𝜂(𝑣, 𝐴, 𝑃) is the decision defined by (1.12). 
The mathematical expectation is taken over the whole d—dimensional feature space V. In 

other words the Bayes error is a measure of the overlapping of alternative distributions in 
the feature space V, e.g. the expected proportion of the "incorrect" classification. Since we 
do not know to which class experimental vectors belong, we obtain an estimate of RB via the 
TS: 

𝑅V� = 𝐸{
1
𝑀��

>𝜃[𝜂(𝑢5, 𝐴, 𝑃S)]}
6��
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        (1.24) 

i.e. we classify the {ui}, i = 1, MTS and check the correctness of the classification over the 
index of the class tj , j =1,L. The expectation is taken over all possible samples of volume 
MTS. 

However, as numerous investigations have shown (e.g. [94]), this estimate is system-
atically biased and hence, a one-leave-out-for-a-time estimate is preferable 

𝑅Vi =
1
𝑀��

>𝜃{𝜂(𝑢5, 𝐴, 𝑃S(5))}
6��
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                                       (1.25) 

where R𝐴, 𝑃S(5)T is a TS with a removed i-th element, which is classified and then "returned" 
to the sample. This estimate is unbiased and has an essentially smaller m.s. deviation 
compared with other estimators [89]. The advantage of Re is especially notable when the 
feature space has a high dimensionality. 

Note, that we have the possibility to estimate the error probability of various types by 
classifying various TS classes - {ui ,tj }, j = 1,L. 
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By 𝑅5ci  (or simply Rij) we denote the probability of classifying the i-th class events as 
belonging to the j—th class (misclassification). By RH  the "true" classification probability 
will be denoted. For EAS classification according to 5 primary groups, each element of the 
“classification matrix” have to be determined, using the Bayes risk  estimate (1.25): 

⎝

⎜⎜
⎛

𝑅'→' 𝑅'→¤ 𝑅'→{ 𝑅'→¥5 𝑅'→¦i
𝑅¤→' 𝑅¤→¤ 𝑅¤→{ 𝑅¤→¥5 𝑅¤→¦i
𝑅{→' 𝑅{→¤ 𝑅{→{ 𝑅{→¥5 𝑅{→¦i
𝑅¥5→' 𝑅¥5→¤ 𝑅¥5→{ 𝑅¥5→¥5 𝑅¥5→¦i
𝑅¦i→' 𝑅¦i→¤ 𝑅¦i→{ 𝑅¦i→¥5 𝑅¦i→¦i⎠

⎟⎟
⎞

 

This matrix presents accumulate α priori knowledge on the possibility of data classification 
into 5 categories. If all diagonal elements are greater than 0.6 (and therefore - the sum of all non-
diagonal elements in each line is less than 0.4), you can expect unambitious results of fraction 
estimation after reconstruction procedures explained in next section. 

The overall index reflecting the "goodness" G of features used is the following index of 
separability: 

𝐺 = «¬𝑅55
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                            (1.26) 

This averaged product of diagonal elements represents the "mean" probability of true 
classification into one of L categories. This index, of course, is directly connected with Bayes 
error. 

1.3.5 FRACTION  ESTIMATION 

Now let us estimate the a posteriori fraction of various classes in the distribution mixture. 
The best estimate of the a posterior fraction (Hey, 1983) (in case of a uniform a priori  
information and absence of systematic errors) is the empirical fraction 

𝑃5i =
63
6®¯®

                              (1.27) 

where, Mi   is the number of events classified by the Bayesian decision rule (1.12) as belonging 
to the class Ai , Mtot  is the total number of events. With account of classification errors the 
corrected fraction (p roportion) can be obtained as the solution of the following set of linear 
equations: 

>𝑃VP𝑅P5 = 𝑃5i,									𝑖 = ,1, … 𝐿.
7
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                                                 (1.28) 
where 𝑃VP  is the estimate of the proportions Pk of the distribution mixture (1.4). 
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The accuracy of the estimates is defined by the TS size and number of control data as well 
as by the value of the Bayes risk, which represents the "quality" of discrimination with the 
chosen feature subset. 

Note, that the set (1.28) is a poorly defined system and at large values of classification errors 
the solutions of the set are unpredictable and hence, the choice of a feature combination 
providing a high percentage (≥ 60% ) of correct classification is a necessary preliminary stage. 

For classification in two categories (for example "heavy" -Fe, and "light" - p nuclei) the 
system of two equations can be easily solved explicitly: 
 

𝑃hi =
p±²
² z³´,±²

Gz³´,±²z³±²,´
,				P¶ = 1 − 𝑃hi.                            (1.29) 
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CHAPTER 2.  
UPPER  BOUNDARY  OF  IRON  NUCLEI  IN  PRIMARY  
COSMIC  RAYS  AT  E > 1016 EV 
 

Historically the multivariate nonparametric analysis methods were applied first to PAMIR 
collaboration emulsion chamber data (Pamir, 1973) with Lebedev institute group. Results 
obtained by new data analysis methodology were summarized by Nina Roinishvili in topical 
review (Roinishvili,1995). An emulsion chamber presents a sandwich of solid material 
interlined with x-ray films covered on both sides by sensitive layers. An electromagnetic cascade 
induced by electrons, positrons or γ-quanta is registered by the x-ray film. After development of 
the x-ray films the shower particles are observed by the naked eye as dark spots a few hundred 
µk in radius. The density of a dark spot is proportional to the energy of the initial particle and the 
relative displacement of two spots on the two sensitive layers of film allows measurement of the 
angle of incidence. 

A layer of light material, a few interaction lengths thick, is located in the emulsion chamber 
between x-rays for registration of charged pions and nucleons. In this layer a hadron produces γ-
quanta, mainly from π°, which are then registered in x-ray films. A dark spot from a hadron has 
the same size (~ 100 µk) as a single γ-quantum and its darkness is proportional to the energy 
converted by the hadron to the electromagnetic component. The energy threshold in emulsion 
chambers is about 2-4 TeV. 

A nuclear-electromagnetic cascade in the atmosphere induced by a primary cosmic-ray 
particle is registered by the emulsion chamber as a group of “genetically connected” spots- all of 
which have the same incident angles, so called, γ-families. The typical size of a family is about 
15 cm, though its size range is very wide, from 1 cm to several meters. The energies of the γ-
quanta and hadrons as well as their distance from the family centre are measured. This is the raw 
information for a further analysis of the families. 

The analysis of data obtained by means of emulsion chambers is especially complicated due 
to two circumstances: 

• The observed spots results from well developed nuclear electromagnetic cascades in the 
atmosphere and it is very difficult to reconstruct the primary particle and its interaction 
phenomenology. 

• The interaction which is studied is characterized by many unknown parameters, each of 
which influence cascade development. 

Thus the problem is highly indirect. The solution could be only approached by the 
simulation of the cascade in the atmosphere. The simulations are based either on ”physical” 
models prompted by a theory and tuned on the experimental data at lower energies or on special 
“simplified” models, intended to investigate the influence of certain parameters on cascade 
development. It is well known that the most difficult obstacle to cosmic-ray data interpretations 
is the yet unknown chemical composition of primary cosmic rays at the energies above 1014 eV. 

An ambiguity in the data interpretation arises in connection with this uncertainty: most 
manifestations of a heavy nucleus interaction with an air nucleus are identical to that of a 
nucleon interaction with large energy dissipation. Due to this the longstanding argument of 
whether there is heavy nucleus dominance or scaling violation in the fragmentation region has 
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not yet been solved. 
The statistical decision approach for multidimensional information has been elaborated over 

the past few years for the Pamir Collaboration data (Chilingarian, 1983), (Chilingarian et al., 
1985). The aim was to divide experimental γ-families into those caused by light nuclei (class 

L) and those caused by heavy nuclei (class H). To classify some events into these two 
classes L and H by means of a parameter Z (or a set of them—multidimensional information), 
so- called training samples based on certain models are used. The chosen parameter (or 
parameters) has to satisfy the following requirements: the Z distributions are essentially different 
in the two classes (L and H) and the experimental Z distribution is well described by their 
mixture. 

The method is illustrated for the one-parameter case in the Figure 2. The distributions of the 
parameter Z for families induced by light nuclei (L) and heavy nuclei (H) obtained by a training 
sample for some models are shown in the upper part of the Figure 2. The conditional 
“experimental” distribution is in the lower part of the figure. The real experimental event is 
attributed to class H (heavy nuclei) if Z > Z0, which corresponds to 

𝑃𝐻(𝑍) > 𝑃𝐿(𝑍)                    (2.1) 

Here P(Z) is the probability of obtaining the given value Z for the given classes L or H. In 
contrast the family is attributed to the class L (light nuclei) if Z ≤ Z0 (Chilingarian et al., 1987A). 
 

 

Figure 2. The scheme of events attribution to classes: If Z > Z0 an event is attributed to the H class, 
otherwise to L. 

Naturally all events produced by light nuclei with Z > Z0 would be incorrectly labeled. Their 
fraction is denoted by RL. Similarly RH is the fraction of events produced by heavy nuclei 
which are mistakenly attributed to the class L (Z ≤Z0). The training samples help to obtain RL 
and RH. They allow the experimental fraction of events attributed to class H (Fe in our case), 
(P*Fe), to be corrected by means of the misclassification rates RL and RH, obtained  by training 
sample. Of course, the simulation model used for generation of simulation should be adequate. 

𝑃hi =
p±²
∗ z³»

Gz³»z³¼
,                                (2.2) 

Here PFe  is the corrected value for the fraction of families belonging to the H(Fe) class, 
assumed to be produced by heavy nuclei .For the problem under consideration training samples 
were simulated by the MJEp⊥ (Dunaevsky, 1986) model which includes an increasing cross 
section, scaling violation in the fragmentation region of hadron-air nuclei collisions (the inclusive 
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cross section at x = 0.3 is 2.2 times less at 1016 eV than at 1013 eV), charge-exchange and the 
production of semi-hard jets. This model describes most of the properties of the experimental 
families rather well. By means of training samples four classification parameters were chosen 
〈ER〉, n′, b′ and Σ ′ER, where E and R are the energy and radius of the given γ-quantum, n' is 
their multiplicity and b' a parameter of azimuthally asymmetry of a γ-family. The 〈〉 brackets 
stand for the family averaging, the prime′ denotes that only most energetic quanta with 
fractional energy f = E/ΣE > 0.04 are taken into account. (ΣE is the total energy of a γ-family). 

Two alternative chemical compositions of primary cosmic rays (PCR) were investigated: N, 
normal (42% p, 17% Fe at 1016 eV); and F, enriched by Fe (11% p, 63% Fe at the same E0). 
This means that two samples of families for two models were simulated with the same 

MJEp⊥ model. We simulate separately γ-families according to the N and F chemical 
compositions. Then we select from simulations only families generated by the light nuclei, so 
called L events; by the heavy nuclei – H events; the case when we select all families we’ll 
denote as M class. Therefore, we have 6 possible combining chemical composition and used and 
event selection method. For example, N-L model will denote families generated by the “normal” 
composition model and selection of the “light” primaries. Our goal now is to investigate which 
of theses 6 combinations provides parameters whose means are close to the experimentally 
measured ones. 

Table 1 (from (Chilingarian et al., 1987A)) presents these comparisons for the families with 
total energy of 100-400 TeV at an energy registration threshold of 4 TeV and R ≤ 15 cm. It is 
apparent that M sets (especially N-M), i.e. the mixture of L and H sets, are compatible with the 
experimental data for all parameters, while L and H sets (classes) predict quite different values 
for the chosen parameters. 
Table 1. The comparison of the mean values of parameters calculated from different simulations with 
corresponding experimental values. 

 〈ER〉 (G eV cm) n′ b′ ′ER, (GeV cm) 

Experiment 22.4 ± 0.9 10.4 ±0.2 0.211 ±0.009 260 ± 10 

Model     

N-M 23.7 ± 0.6 9.9 ±0.1 0.218 ±0.007 273 ±7 

F-M 26.2 ±0.9 10.0 ±0.1 0.227 ± 0.008 306 ±13 

N-L 23.4 9.9 0.217 268 

N-H 44.0 11.4 0.320 590 

F-L 23.8 9.8 0.219 271 
F-H 44.0 11.4 0.319 593 
 
Simultaneously we can read from the Table 1 that chosen parameters are systematically different 
for the H and L classes. The, difference is smallest in the case of n′ variable and is more than 2 
standard deviations for the 〈Σ ′ER〉 parameter. 

The results of classification of the Pamir experimental data are described in (Denisova et al., 
1987). Training samples for N (normal composition) and F (heavy nuclei enriched) models were 
used to determine the parameters of the decision rule (similar to Z0). Different combinations of 
variables were used for the classification. Obtained decision rules were applied to classify the 
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Pamir families into L and Fe classes. Fractions of families produced by Fe nuclei for the 
chemical compositions N and F obtained in this way are given in Table 2. The maximal values 
(mean + one standard deviation) of PFe are shown in parentheses. 
Table 2. The fractions of families produced by Fe nuclei for the two chemical composition N (normal) 
and F (Fe enriched) for the various family parameters. 
 

Parameters 
〈ER〉,  b′ 

N-composition 
0.01 ± 0.04(0.05) 

F-composition 
0.02 ± 0.04 (0.06) 

b′ ,Σ ′ER -0.01 ± 0.04 (0.04) 0.02 ± 0.05 (0.07) 
n′,Σ ′ER -0.001 ± 0.04(0.04) 0.05 ±0.05 (0.10) 
n′, b′ -0.07 ± 0.09 (0.09) -0.02 ± 0.09 (0.09) 

 

The logic of the analysis of the results posted in the Table 2, are described in details in 
(Chilingarian et al., 1987). As we want to reject hypothesis that almost all primaries after “knee” 
are iron nuclei, we’ll try to estimate proportion of irons in worst for it conditions, i.e., taking 
variables giving maximal value of irons among all used combinations, add one standard 
deviation for actual proportion, etc. The negative values of proportion, of course, have no 
meaning. There only signaling that “true” proportion is very near to zero and application of 
equation (2.1) introduce corrections shifting proportion to the negative region. When 
encountered such case, we assume that proportion is simply zero. Also to make our estimate of 
“iron families” proportion in some sense “model-independent” we use different combinations of 
family parameters and, as we already mention, take the “worst” case – maximal proportion. As 
can be seen, the maximal values for PFe are 0.09 and 0.10 for N and F compositions 
correspondingly. 

Now the problem is to reproduce the fraction of iron nuclei in PCR, which is not trivial as 
families produced by light and heavy nuclei have different registration efficiencies. Again, 
selecting the “worst” conditions in estimating solid angle and registration efficiency (see for 
details (Chilingarian et al., 1987A)) we come to results posted in the Table 3. 
Table 3. The upper limits of the Fe intensity and of the fraction of Fe in primary cosmic rays for the 
two chemical compositions N (normal) and F (Fe enriched). 

Model Max  IFe (> 1016 eV) (m-2 s-1  ster-1) Max PFe (> 1016 eV) 

N 5.9 x 10-9 0.22 

F 7.9 x 10-9 0.29 

 
The conclusion from the foregoing analysis is that the estimated value for the Fe fraction in the 
PCRs, 0.29, is in direct contradiction with that introduced in the Fe-enriched F-model (PFe (>1016 

eV) = 0.63), while the fraction 0.22 for the N model is in reasonable agreement with the normal 
chemical composition. 
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CHAPTER 3.  
STATISTICAL TECHNIQUES IN BACKGROUND 
REJECTION FOR ATMOSPHERIC CHERENKOV 
TELESCOPE 
3.1  ATMOSPHERIC CHERENKOV TELESCOPES OPENING NEW WINDOW TO 
UNIVERSE 

Most energetic processes in Universe are accompanied by acceleration of the elementary 
particles and ions to enormously big energies. Up to ~30% of total energy of the supernova 
explosion is believed to be taken by the high energy particles. Among these particles, high 
energy gamma-quanta born in the interactions of the high energy hadrons are of most interest, 
because, due to absence of charge, gammas didn’t deflect in the magnetic fields filling the 
Universe. Therefore, detecting of the high energy gamma-rays will give possibility to locate 
sources of high energy particles acceleration and will help to solve long standing problem of 
cosmic rays origin, as well as open new window for detecting celestial objects in high energy 
particle fluxes. 

The space-born gamma-ray detectors detect photons upward to energies in excess of 10 
GeV. Compton Gamma-Ray Observatory, operated near 10 years detects hundreds of gamma-
ray point sources. However we didn’t expect in near future growing of the energy range of 
satellite detectors, due to very weak fluxes, typically proportional ~ E-γ where γ values are ~ 3. 
Thus, due to limitation in mass of satellite detectors a practical upper bound, to be reached by 
GLAST satellite to be launched in 2006 is 30-50 GeV. 

Fortunately, ground-based techniques permit gamma-ray astronomy to be extended to much 
higher energies. Primary particles, interacting with atmosphere nuclei are generating cascades of 
secondary particles. These particles can reach mountain altitudes and be detected by the big 
surface arrays. Cascades of charged particles interacting with atmosphere nucleus also are 
generating Cherenkov photons (in the narrow cone around primary particle direction) and 
fluorescence photons (distributed much more wide). 

These photons during moonless nights could be collected by the big optical reflectors and 
registered by the optical sensors located in their phocal plane. 

So, using the atmosphere as a target, multiplying primary gamma millions times and 
collecting these low energy Cherenkov photons by reflectors with huge collecting power we can 
detect very weak flux from exotic objects in Universe. The main obstacle of the Cherenkov 
Atmospheric Telescopes (ACT) is presence of the overwhelming background of cosmic ray flux, 
though falling also as E-γ , (γ= 2.7- 3) far exceeds the expected flux of gamma-rays. Hence, for 
implementing the ACTs crucial was to develop technique for distinguishing gamma-rays from 
cosmic-ray ions. Such technique was developed by the Whipple collaboration by the 
revolutionary changing of the 37 photomultiplier sensor pixels (5 cm diameter phototubes, 
spaced 0.5° apart; the full field of view was 3.5°). of big 10 m. optical reflector located on mt. 
Hopkins in Arizona by the “imaging” 109 phototube sensor (typical spacing of 0.25°) (Cawley et 
al, 1990). 
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3.2 IMAGING TECHNIQUE 

Originally imaging was considered as a means of increasing the angular resolution of the 
ACT. Only later was the possibility of using this technique to identify the nature of primary 
considered (Cronin et al.). 

Gamma and hadron initiated showers are distinct due to different kind of interactions: 
gamma showers are purely electromagnetic, generating mostly gammas and electrons before 
dying deep in the atmosphere; in hadron showers (mostly protons at energies up to 10 TeV) only 
approximately third part of energy is converted from the beginning to electron-photon cascade, 
two thirds of energy is converted to charged pion energies and undertake further strong 
interactions in the atmosphere, to dye finally again in electromagnetic shower. 

Therefore, due to broad angular distribution of high energy pions taking significant part of 
primary energy and due to hard interacting core of shower including penetrating muons, the 
hadron showers are broader and longer comparing with more compact electromagnetic showers. 

And, of course, there is pure geometrical distinction. ACT axes are directed towards the 
location place of the investigated source, keeping source(star or galaxy) at center of the field of 
view, therefore, the gamma-rays are incident parallel to the optical axes. Hadronic showers, 
initiated from highly isotropic cosmic ray flux, are not similarly constrained. The orientation of a 
shower’s image in the field of view of the telescope depends at its angle of incidence with 
respect to orientation of the telescope axes. Showers incident parallel to the optical axes will 
have images pointed toward the center of the field of view. Of course, cosmic rays, traveling 
randomly from the same direction will have also the same orientation (but not shape). 

Thus, both orientation of the image and its shape could be used for the background 
suppression. And because of the ability of Wipple Cherenkov telescope to discriminate between 
gamma-ray – and hadron-initiated air showers, the camera archived a flux sensitivity an order of 
magnitude better than conventional nonimaging telescopes (Reynolds et al., 1993). 

The initial method for enumerated the image was proposed by Michael Hillas ((Hillas, 
1985), see Figure 3), so called “Hillas” parameters till now are widely used in ACT’s of next 
generation for the “purification” of the initial image samples. Best ellipse was fitted to the 
calibrated (details on the phototube tuning, “pedestal” extraction and other experimental 
technique one can find in (Cawley et al, 1995) phototube counts, giving a best mean square 
estimate of ellipse axes size and relative orientation, as well as distance till center of field of 
view, where investigated point source is projected (see Figure 3). This rather simple 
parameterization, giving separately shape and orientation of the image, prove to be very useful, 
implementing in last decade to many ACT’s of next generation. 
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Figure 3. Definition of the “Hillas parameters” for hadron and gamma image 

3.3  BACKGROUND  REJECTION  STRATEGIES 
Proceeding from the estimated image parameters different approaches to construct the image 

classification procedure could be developed. 
These strategies  could be divided into big categories: 
1. a-priori strategy, proceeding from the simulation of the gamma and hadron-initiated 

showers and it’s propagation in the atmosphere. For each shower the Cherenkov light image is 
obtained and parameterized. The distribution functions of the “pseudo experimental” image 
parameters corresponding to both gamma and hadron primaries are given in nonparametric form 
as subsets of simulation trials corresponding to the particular primary with definite angles of 
incidence, energy and, of course, inherent instrumental accuracies and hard-ware solutions 
chosen for construction of ACT and trigger. 
a-p osteriori strategy, proceeding from already registered, so called, 
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• “ON” sample- obtained with telescope axes oriented in direction of the putative gamma-
ray source and 

• “OFF” – sample, obtained by pointed telescope axes in direction of the same celestial co-
ordinates, but after the source already leave the destination. 

• If the field of view of the telescope is enough large it is possible to take “ON” and 
“OFF” scans simultaneously, selecting within field of view samples pointed to source 
and to “empty” space. 

Having 2 samples, one containing signal, another – not, it is possible to search for, so called, 
“signal domain”, one or multidimensional boundary outlining the space in parametric space 
where signal concentration is relatively higher comparing with noise, those enlarging the signal-
to-noise ratio.. 

Empirical distribution of the hadron showers could be obtained with high significance by 
detecting “pure” background, pointing telescope axes to the region where no potential sources 
are expected. The distribution of gamma-image parameters are obtain with Monte Carlo 
programs simulated shower development in the atmosphere, transport of the Cherenkov photons 
till optical reflector, and then simulating of trigger conditions, experimental noise and other 
sources of distortions. Modern simulation programs like CORSIKA (Heck et al., 1998) are 
sophisticated enough to count for such physical effects as change of density of atmospheric 
profile and influence of the magnetic field of Earth on the shower particles. 

Nevertheless, we are not aware of any successful attempts to parameterize multivariate 
shower parameter distributions using any analytic form of the distribution function. 

Just first comparisons of simulated showers obtained by the codes developed for the 
Whipple 109 phototube camera reveal big differences in shape and orientation of the gamma and 
hadron images. First the main activity of Whipple collaboration was directed to invention of the 
single “best parameter”, combining shape and orientation differences. 

Among numerous more or less successful trials the AZWIDTH parameter (Hillas, 1985) 
proves to be best, rejected the background (of course, from the model samples) down to few 
tenths of percent, at a few hundred GeV (over a field of view of 3°), whilst still accepting more 
than 50% of gamma showers. 

First attempt to develop statistical theory of background rejection was done in (Aharonian et 
al. 1990),(Aharonian et al., 1991). The statistical theory includes: 

• Selection of the optimal subset of parameters for discrimination purposes; 

• Introducing of the Bayesian decision rules; 
• Introducing of the P-values of statistical tests as measures of the “closeness” of the 

parameter distributions; 
• Correlation analysis revealing best pairs to be used in discrimination; 
• Estimation of the Bayes risk (probability of misclassification) as measure of closeness of 

multivariate distributions; 
• Parzen and K-Nearest-Neighbor nonparametric density estimation modes with 

adaptation of the method according to random sample. 
Overall scheme of statistical inference from simulated samples, including method of 

selecting “best” subset of image parameters was checked by simulated samples performed with 
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code developed by A.Plyasheshnikov. (Plyasheshnikov et al., 1985). 
The combination including image shape parameters and AZWIDTH parameter (there was 

not yet included in simulation “pure” orientation parameter - “ALPHA”) was pointed as most 
perspective. 

Historically, in the end of 80-ths, different discriminants were intensively applied to the first 
unambiguous detection of Crab nebula by the Whipple collaboration, contained in the famous 
1988-1989 data files, consisting of 65 ON-OFF pairs, more than 1 million images (Vacanti et al., 
1989). 

To prove existence of the source, one looks for an abundance (Non – Noffi) of events coming from 
the direction of a possible source (Non) as compared with the control measurement, when pure 
background is registered (Nof{). As the expected fluxes are very weak (the signal to background 
ratio is less than ~ 0.01), one should always answer the following question: is the detected abundance 
a real signal or only a background fluctuation? The measure (level) of statistical significance used in 
gamma-ray astronomy is the so-called criterion size (σ) (Zhang et al., 1990): 

𝜎 = Á¯ÂzÁ¯ÃÃ
ÄÁ¯ÂÅÁ¯ÃÃ

                   (3.1) 

The greater is σ the lesser is the probability that the detected excess is due to a background 
fluctuation. Development of new detector hardware and new data handling methods aim to enlarge 
the value of σ. After selecting the "gamma-like" events from raw data (both from the ON and 
OFF samples), the criterion takes the form: 

𝜎∗ =
Á¯Â∗ zÁ¯ÃÃ

∗

ÆÁ¯Â∗ ÅÁ¯ÃÃ
∗

                   (3.2) 

where 𝑁ÇÈ∗ , 𝑁Ç¦¦∗ are the  of events surviving image selection cuts. 
The initial value (measured by the raw data) of σ for the 65 ON-OFF pairs equals to 4.8 

(Table 4). After applying the AZWIDTH cut, selecting “small” shape events well aligned to the 
center of point of view of telescope, it was possible to enlarge σ up to 20. Implementing the 
multivariate “Wedge” cut (WIDTH, LENTH and AZWIDTH, using the correlation between 
AZWIDTH and WIDTH, significantly different for the gamma and hadron images) (Chilingarian 
et al., 1990), (Chilingarian et al., 1991B) the σ was enlarged to 27 (more than was possible with 
any single parameter). 

Following improvement of the image classification technique was done by Michael Punch 
(Punch et al., 1991), (Punch, 1994), introducing, so called, “supercuts”, remaining till now the 
basic strategy of the image selection. Instead of AZWIDTH, new parameter ALPHA, specifying 
the orientation of the major axis of the image relative to the source position was introduced, as 
having more obvious interpretation than AZWIDTH. Also DIST parameter specifying the position 
of the image relative to the telescope center of view was added to the LENGTH, WIDTH and 
ALPHA combination. The σ value after applying the supercuts – rectangular 4-dimension 
gamma-domain – reaches value of 34. 

Along with multidimensional approach, the Neural Network technique also was proposed 
for the image classification (Chilingarian 1991A). Neural Network is universal generalizing 
device providing mapping of the input multidimensional information, i.e. image parameters, to 
the class assignments --see for example, (Bishop, 1995). To provide correct classification 
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Network should be “trained” on the samples with known membership. The gamma and hadron 
images obtained from simulations are used for Network training. The total number of 
misclassifications (so called “classification score”) is the “goal” function – to be minimized in 
the training process. After training the Network is used for classification of the experimental 
data, or for the determination of Network performance - for classifying simulations not used for 
training.  However, Neural classifiers trained on simulations, as well as Bayesian classifiers fails 
to outperform the simple techniques of multidimensional cuts, tuned on the experimental data 
itself. Those, the a-priory technique couldn’t compete with a-posteriori technique for 
experimental images analysis. The main reason of the weakness of a-priory approach is inherent 
oversimplification of the simulation and difficulties to account for the all kinds of experimental 
errors. Therefore, a-priory analysis is used mostly for the outlining expected values of the 
multidimensional cuts and for the investigation of possible nontrivial correlations. Also a-priory 
analysis is very important in telescope design studies, in trigger and analysis methodologies 
selection. 

Therefore we decided to use Neural Networks as the a-posteriori analysis device. Instead of 
using the “classification score” as goal function of Net training (utilizing the information on the 
image belonging to the gamma or hadron classes) we maximize directly the σ value, obtained by the 
executing experimental ON-OFF pairs, and not pure gamma and hadron images from simulation. 
We use a simple feed forward Network with number of nodes 4:: 5:: 1 (Chilingarian, 1994) to 
select a more realistic nonlinear shape for the gamma domain. During the iterations each particular 
ON& OFF event was classified according to following decision rule: 
 

𝑂𝑈𝑇(�⃗�) �
< 𝐶∗ → �⃗�	is	classifed	as	signal
≥ 𝐶∗ → 𝑥	ÌÌÌ⃗ is	classifed	as	background

                (3.3) 

where OUT(x) is the output node response for an image parameters subset x. Choosing an 
appropriate boundary value of net output (changing from 0 to 1) we determine, so called, decision 
point C* to define the classification procedure: an event with an output greater than or equal to 
the decision point is attributed to the background class, while all the other events are assigned to the 
gamma class. 

By moving the decision point C* along the (0, 1) interval we can change the relation between 
the errors of the first and second kind (the position of the decision point is the neural analog of the 
loss function in the Bayesian approach). This decision rule is a Bayesian decision rule; therefore the 
output signal of a properly trained Neural Net is an estimate of the a posteriori probability density 
(Ruck et al., 1990). The Network training is performed using one of stochastic training scenarios 
implementing in the ANI package (Chilingarian, 1998). By making random changes in the 
multidimensional space of the Network weights we are searching the optimal weight configurations, 
outlining optimal shape of the gamma domain. 

After executing off all images a new σ value is calculated each time and if its value enhanced 
comparing with previous value, the changes in the Network weights survive, if not, changes are 
subtracted and new random step is implemented. After several hundred thousands of iterations the 
more complicated gamma-domain shape is outlined and the σ value was enlarged up to 35.8 
(Chilingarian, 1993), (Chilingarian, 1995), (Chilingarian et al., 1994). 

The comparison of different background suppression methods is shown in Table 1, where DIFF 
=𝑁ÇÈ∗ − 𝑁Ç¦¦∗  is the estimate of the signal, DIFF/ 𝑁Ç¦¦∗   is the estimate of the signal-to-noise ratio, 
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𝑁ÇÈ∗ /𝑁Ç¦¦∗ is the estimate of background suppression by the technique used. 

Table 4. Comparison of the different background rejection methods 
 
 
Raw 

N*on 

506255 

N*off 

501408 

σ 

4,8 

DIFF 

4847 

DIFF/N*off 

0.01 

N*off / Noff 

Azwidth 14622 11389 20.4 3233 0.28 0.0227 

Wedge cut 6017 3381 27.2 2636 0.78 0.0067 

Supercut 4452 1766 34.3 2686 1.52 0.0035 

Neural 4::5::1 6278 2858 35.8 3420 1.20 0.0057 
 

Concluding this section we can also state that proposed Michael Hillas simple second 
moments imaging proves to be very relevant to the experimental accuracy of the first imaging 
telescopes. And introducing of the new methods--see for example (Danaher, 1993) and topical 
review of David Fegan, (Fegan, 1997)--couldn’t introduce any significant improvement to the 
results summarized in Table 1. Also adding of the additional image parameters --see (Badran et 
al., 1997)--didn’t enhance the background rejection to the levels significantly differing  from 
the ones presented in Table 4. 

Now, when next generation of ACTs (HESS, MAGIC) is about to start collect data, the 
challenge is to investigate if the same data analysis methodology have to be change to the new 
one, exploiting in more details the information from much bigger optical sensors. 
 
3.4  A PRIORI METHODS OF BACKGROUND REJECTION 

As was mentioned in the previous section, a priori methods of background rejection although 
are not so effective as a-posteriori ones, are very useful for the detector design purposes. For 
each new telescope it is necessary to investigate appropriate data analysis methodologies for 
selecting one providing required level of background rejection and signal acceptance efficiency. 

Usually such studies are preceding the start of telescope operation and intensive simulations 
are required for the understanding telescope performance and preparing necessary software for 
data analysis and physical inference. Having enough simulated samples of “pure” signal and 
background on hand we can apply one from the several possible decision rules (say we reject 
image if its WIDTH > 0.2°) and calculate both kinds of the misclassifications: loss in the signal 
detection efficiency and contamination of the selected “signal” sub-sample by the noise. Plotting 
these pairs we obtain the operational characteristic of the decision rule used, reflecting its power 
and possible tradeoff between both kinds of errors. Of course, as it is well known from statistical 
decision theory, it is impossible to reduce simultaneously both kinds of errors. Therefore, this 
decision quality diagram is measure of the adequateness of the decision rule chosen (by decision 
rule we understand both the algorithm and its particular realization by code and chosen subset of 
image parameters). Comparing curves obtained with different classification strategies, but one 
and the same data we can outline the most appropriate one. 

If it is difficult to compare the curves, we can fix signal accepting efficiency at say ~50% 
level, and compare corresponding contaminations of selected “signal” sub-sample by hadronic 
images 

In such studies, trying numerous statistical classification methods with many tunable 
parameters, always a question arises: are we utilizing all distinctive information completely, are 
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there any chancres to improve the quality of classification? 
To answer this question we have to adopt some general scheme of the statistical decisions 

and give rigorous formulation of the decision optimality criterion. 
Let’s assume first that we know the probability function fh(v) defined in each 

multidimensional point v of a subspace V of the metric space of image parameters Rn (say, 3 
dimensional space combining shape and orientation parameters – WIDTH, LENGTH and                    
ALPHA). V subspace is comprised from “realistic” values of the image parameters, in 
correspondence with expected distribution of image parameters as measured by particular 
detector setup. The probability function fh(.) is quantifying the information on belonging of 

particular image with parameters (vi ≡ WIDTHi, LENGHT and ALPHAi), vi ∈ V, to 
background (hadron) class. The symmetric probability function fγ(.) quantifying belonging to 
alternative signal (gamma) class also is defined in each point of V  and is connected to fh(.), by  

𝑓m(𝑣) + 𝑓k(𝑣) = 1, 𝑣 ∈ 𝑉                         (3.4) 

We can assume, that in principle the f(.) functions could be obtained by extremely large 
cycle of simulation (not possible with existent CPU power) with very detailed Monte Carlo 
(MC) code (not available yet) mimicking traversal of all particles and ions through atmosphere 
and transporting Cherenkov photons till phototubes. The input parameters for these simulations 
should be chosen from a subspace Tn of the metric space Rn of all parameters influencing the 
experimental measurement. Tn consists of gamma quanta (or hadron) energy, angles of 
incidence, conditions of Earth magnetic field, night sky illumination, possible local light 
conditions, many of experimental facility parameters. 

Or, we can assume the imaginary calibration experiment with orbiting accelerator sending 
different type of particles in direction of ACT. 

This concept is reminding the “stable candle “concept, sometimes referring to Crab Nebula 
highly stable gamma-ray source. 

Resuming, we have on hand 2-way classification problem. When dealing with classification, 
with some decision on the belonging of the measurement to the one or another class we need not 
only probabilistic description of the alternative classes, but also an algorithm (decision rule) 
performing classification. We are interesting in finding the best solutions; therefore we need also 
some measure (loss function) counting for consequences of any decision committed by the 
adopted decision rule. Bayesian paradigm consists in introducing of several spaces and 
probabilistic measures on it. 

• The space of the “basic states - states on Nature” - Signal – Background, Gamma – 
Hadron, we denote this space as A. In our case A space consists of 2 members: γ and h, 
we’ll denote these basic states as Ah and Aγ. 

• The “Outcomes space” – space of possible statistical decisions we denote as  . 

• The loss function C is defined on the direct product of “basic states” and “decisions 
spaces” 𝐴⊗ 𝐴\ 

The Bayesian decision rules minimize the losses due to incorrect classification: 

𝐴S = argmax5cÑ𝐶5c ⋅ 𝑝(𝐴5/𝜈)Ô, 𝑖, 𝑗 = ℎ, 𝛾                  (3.5) 
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where v is a multivariate measurement (image parameters) and 
 

𝑝(𝐴5/𝜈), 𝑖 = ℎ, 𝛾                                       (3.6) 
 
are estimates of a-posteriori probability densities, connected with conditional ones by Bayes 
theorem: 

𝑝(𝐴5/𝜈) =
p3⋅'(×/`3)

'(×)
, 𝑖 = ℎ, 𝛾                  (3.7) 

where  
𝑝(𝜈) = 𝑃m𝑝(𝑣/𝐴m) + 𝑃k𝑝R𝑣/𝐴kT                      (3.8) 

 
and Pi  are a-priory probabilities. 

Conditional probability densities are directly connected with the fh(v) probability function 
introduced above: 

𝑓m(𝜈) =
ØÙpÙ'(×/`Ù)

ØÙpÙ'(×/`Ù)ÅØÚpÚ'R×/`ÚT
                 (3.9) 

Substituting the equation of a-posteriori density (Bayes theorem, (3.7)) in the Bayesian 
decision rule we’ll obtain new formulation as follows 

𝐴S = 𝑎𝑟𝑔𝑚𝑎𝑥5cÑ𝐶5c ⋅ 𝑃 ⋅ 𝑝(𝜈/𝐴5)Ô, 𝑖, 𝑗 = ℎ, 𝛾               (3.10) 

The multiplier Cij ⋅ Pi is affecting the decision rule as one entity; you can’t separate the 
influence of a-priory probabilities from the effect of losses function on the performance of 
decision rule. And it is senseless to define and plug in separately both measures; therefore we 
introduce the notion of the “a-priory losses” in one term equal to Cij ⋅ Pi. Further we’ll denote a-
priory losses again as Cij . 

Bayesian decision rule maps a decision boundary (db) in V (point – in one-dimensional case, 
line – in 2 dimensional case and surface in three dimensional case) and the misclassification 
losses are determined by the probability “mass” lying on left or right from these boundaries. If 
we assume that losses are equal to zero for correct classification, Chγ = Cγh =0, then minimal 
misclassification risk classifying the image with parameters v, so called, Bayes risk is 
determined by 

𝑟Û(𝑣) = Ü�ÝÞÜß3{Ø3⋅'(×/`3)}
'(()

, 𝑖 = ℎ, 𝛾        (3.11) 

To get more insight in misclassification rate let’s consider one-dimensional case. In this case 
the decision boundary is shrinks to a point db where: 

𝑝(𝑑𝑏/𝐴m)}/𝑝(𝑑𝑏/𝐴k) = 𝐶k/𝐶m               (3.12) 

𝑓m(𝑑𝑏) =
ØÙ

ØÙÅØÚ
                                          (3.13) 

and we can obtain for mathematical expectation of Bayes risk Rb = E(r(v)),  following    equation 
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𝑅Û = 𝑙(𝑣 < 𝑑𝑏) ∫ 𝑝(𝑣/𝐴m)
á
�Û 𝑑𝑣 + 𝑙(𝑣 ≥ 𝑑𝑏) ∫ 𝑝(𝑣/𝐴k)

�Û
zá 𝑑𝑣         (3.14) 

where l is indicator function 

𝑙(𝜇) = 1𝑖𝑓	𝜇	𝑖𝑠	𝑡𝑟𝑢𝑒, 0	𝑜𝑡ℎ𝑒𝑟	𝑤𝑖𝑠𝑒                       (3.15) 

As we haven’t possibility to obtain the full probabilistic description (conditional densities 
p(v/Ah) and p(v/Aγ)) of classification problem from unbiased perfect simulation, or from 
calibration, we are obliged to use some Monte Carlo code for approaching the problem. We can 
generate several realizations of the simulation code with input parameters uniformly selected 
from Tn1 subspace of  Tn  (n1< n). We have to select limited number of relevant of MC code 
input parameters (n1) allowing us to generate in limited time simulation trials covering V 
subspace of the realistic image parameter values. We’ll denote the image parameters obtained by 
this code by ui, i=1, M, M is number of simulation trials. The sample of simulation trials we’ll 
name training sample. 

The probabilistic measure induced by the M ui vectors on V will differ from the “genuine”. 
Instead of unique probabilistic description in ideal case – function f(.) or conditional densities              
p(v/Ai ), we have to deal with random estimates of these functions obtained from limited samples 
ui, i=1, M. Therefore, these estimates of conditional densities will introducing additional (to 
Bayesian) misclassification errors. The decision rule, using these density estimates will not be 
any more Bayesian decision rule and error committed by this decision rule r will be greater 
comparing with Bayes error. For minimization of these errors and for approaching theoretical 
minimal Bayes risk we have to select relevant density estimation methodology.  Following the 
analysis of Jerome Friedman (Friedman, 1996) we’ll assume that the estimates of conditional 
densities p̂   (v / Aγ ),  p̂   (v / Ah ) in each point v ∈ V are random Gaussian variables with mean value E 
( p̂   (v / Ai  ) ) and variance σ( p̂   (v / Ai  ) ). The mathematical expectation of the random variable p̂   (v / 
Ai ) is taken according to different training samples of the same size M. Following analysis is 
easier to perform by transforming conditional densities to probability function fh(v), according to 
equation (3.14). 

We can make same assumptions about estimates of probability function 𝑓Vm(⋅) as about 
estimates of conditional densities. Let’s denote following paper of Friedman the distribution 
function and moments of estimates of  𝑓æm(⋅) as  𝑝(𝑓æm),  𝐸(𝑓æm), 𝜎(𝑓æm) 

Then the additional error due to smearing of the  could be written in the following form 

	𝑟(𝑣) = 𝑙(𝑓m(𝑣) < 𝑓m(𝑑𝑏)) ç �̂�(
á

¦Ù(�Û)

𝑓æm(𝑣))𝑑𝑓æ + 𝑙(𝑓m(𝑣) ≥ (𝑓m(𝑑𝑏)) ç �̂�(

¦Ù(�Û)

zá

𝑓æm(𝑣))𝑑𝑓æ 

 (3.16) 
                      

where  fh (v),  fh (db) are “true” values of probability function in arbitrary v point and at decision 
boundary. The additional (to Bayes error) errors are determined by the distribution of the   𝑓Vℎ(𝑣) 
function around the true decision boundary fh (db) .  Integrating the tails of distribution 
separately for the greater and smaller values (comparing with true value of boundary value) we 
count for additional errors connecting with sampling and density estimation errors. 

In case of symmetric losses function Chγ = Cγh =1, probability function at boundary is equal to 
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h 

½, but as we already discuss the hadronic background rejection problem for ACT is highly 
nonsymmetrical problem due to huge difference in gamma and hadron fluxes, therefore we’ll 
didn’t simplify equation by putting explicitly  ½ value in equation (3.16). 

After plugging in the assumed Gaussian shape of distribution in (3.16) we obtain (Friedman, 
1996) following equation 
 

𝑟(𝑣) = Φ̂[𝑠𝑖𝑔𝑛(𝑓m(𝑣) − 𝑓m(𝑑𝑏))]
8(¦Ù(())z¦Ù(�Û)

ê(¦Ù(())
                 (3.17) 

 

Φ̂[𝑧] = G
�ì ∫ 𝑒zG/�ß,á

í 𝑑𝑥                   (3.18) 

The term 

𝑏(𝑓m(𝑣), 𝐸(𝑓m(𝑣)) = 𝑠𝑖𝑔𝑛(𝑓m(𝑣) − 𝑓m(𝑑𝑏))(𝐸(𝑓æm(𝑣)) − 𝑓m(𝑑𝑏))             
(3.19) 

is governing the behavior of the r(v) in the very different way comparing with density estimation 
errors. Estimating density we are optimizing some global measure, defined on all function 
support, i.e. integrated mean-square error L2, or integrated module of function estimation error – 
L1 (Devroye et al., 1985). In the case of the classification error only local region around the 
decision boundary is important and therefore the influence of function estimation method is also 
very different. 

Examining the term (3.19) (J.Friedman name it “boundary bias”, but we use a bit different 
equation), we can see that the most important is to have both 𝑓ℎ(𝑣), 𝐸(𝑓Vℎ(𝑣)), on the same side 
(both greater or both smaller) concern boundary value 𝑓m(𝑑𝑏). So, if our function estimate isn’t 
too biased and we haven’t many of images having the boundary value 𝑓m(𝑑𝑏)in between 
î𝑓ℎ(𝑣), 𝐸(𝑓Vℎ(𝑣))ïof  interval we can dramatically reduce the classification error by reducing  the 
variance of probability function estimates 𝜎(𝑓æm) (see (3.17)). 

If mathematical expectation of the probability function estimate is significantly biased concern 
true value, the situation can dramatically change and decreasing of the variance estimate will lead 
to increasing of the misclassification errors. Both goals (keeping bias not very large and reducing 
variance) could be achieved by using, so called, median estimate introduced in 1989 
(Chilingarian, 1989). 

Probability density function is estimated by training samples using Parzen's (Parzen, 1962) or 
K Nearest Neighbors (KNN) (Fukunaga, 1990) methods with automatic kernel width (r K 
parameter) adaptation. Instead of using one method parameter for all density support a several 
numbers of parameters (Parzen kernel widths hk, or Kk neighbors) are implementing for obtaining a 
number of density estimates. 

Then the final estimate is obtained from ordered sequence of these density estimates. The 
median of the ordered sequence is chosen as a final estimate. The probability density for each 
parameter hk is estimated by 

𝑝(𝑣/𝐴5) =
(ðñò∑)ó+/,

�ìô/,mô
õ ∑ 𝑒z�a

,/�mõ
,63

c                  (3.20) 

one density estimate several density estimates are calculated (selected from some predetermined 
parameter set). 
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where d is the feature space dimensionality, Mi, is the training sample size, hk is width of the 
Parzen kernel function, rj is the distance to the jth neighbor in the Mahalanobis metric 
(Mahalonobis, 1936): 

𝑟c = (𝑣 − 𝑢c)� ∑ 	zG (𝑣 − 𝑢c)                         (3.21)   

where Σ is a sampling covariance matrix of the class to which u belongs. 
Our investigations of the median estimate prove both unbiasness and reducing variance leading 

to Bayes risk estimates very close to theoretical values (Chilingarian, 1989), (Chilingarian et al., 1984). 
Therefore we apply the median density estimates for calculating the possibilities of background 
rejection using simulation for the MAGIC experiment (MAGIC A). 
 
3.5  ESTIMATES OF MAGIC ACT BACKGROUND REJECTION RATES 

Recently the first sets of MAGIC detector response simulations set became available at 
MAGIC home page (MAGIC A). The description of the parameters and data sets are 
also posted in the same WEB page. Image parameters were calculated by the Monte Carlo 
program, Corsika (Heck et al., 1998) adding simulation of the MAGIC setup and trigger 
conditions. 

MAGIC telescope is located on the Canary island of La Palma and now is under assembling; 
it has the largest mirror surface of all existing gamma ray telescopes (234 m2) and a camera with 
577 pixels. For more technical details refer the MAGIC collaboration home page (MAGIC A). 

After selecting best discriminants and discriminant pairs according to technique first 
developed in (Aharonian et al. 1990), (Aharonian et al., 1991) the same parameters as for 
Whipple telescope simulation prove to be the best, There are shape and   orientation 
parameters WIDTH, LENGTH and ALPHA, also negligible improvement could be achieved 
adding the DIST and SIZE parameters (details are posted in the Yerevan MAGIC group 
report from July 2002,  (MAGIC). 

After investigating single parameters and parameter pairs we perform intensive study of 
different variable subset using the Bayesian techniques described in details in previous 
paragraph. 

Also we investigated the source elevation influence on achieved classification results. It should 
me mentioned that in first trial when the elevation were changed in the interval (0-5°) the results 
was a factor 2 better (in units of the hadronic images contamination for the approximately fixed 
signal efficiency) than if we use broader elevations range (0-20°). Therefore, if we explicitly add 
the source elevation THETA in parameter set we again obtain same results (2-3% contamination 
keeping 50% efficiency) as described in our report from July 2002 (CRD,   2002). 

The results of subset comparison are posted in the Figure 3. The most striking feature of the 
classification plots is, that the shape parameter are discriminated an order of magnitude worse 
comparing with Whipple telescope. To get insight in detected contradiction we compare one and                       
2-dimensional patterns of Whipple -using the same simulation as one used (Chilingarian et al., 
1990) and MAGIC parameters. As the energy threshold of the Whipple telescope is approximately 
300 GeV, we select from MAGIC simulations also images corresponding to the 300 GeV 
primaries. In such way we only “improve” discrimination ability, because reject numerous low-
energy hadronic images, overlapping with gamma images corresponding to much greater energies. 
From Figure 3 and Figure 4 it is apparent that although the image parameters are calculated using 
different units (millimeters for MAGIC and degrees for Whipple), that the overlapping of hadronic 
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and gamma shape parameters are much more for the MAGIC simulation comparing the Whipple 
data. The most valuable discriminative feature of gamma images – compactness of the shape 
comparing with more long and wide hadron images is completely lost in MAGIC images. 
Presence of the overwhelming amount of small images in MAGIC hadronic simulation didn’t 
allow to effectively use shape parameters for background rejection. 

Before inferring that MAGIC camera isn’t good enough for discrimination purposes it 
should be checked if routine image cleaning operations for huge MAGIC camera were done 
properly for the simulated images. In any case, as was mentioned in another Yerevan group 
report from October 1999 (CRD, 1999), very low thresholds and very big cameras of new 
generation of ACT should pose more firm restrictions on the image analysis software. The Hillas 
parameter approach, very well suited the first generation ACT’s with considerably high 
threshold (>300 GeV) and moderate camera size, may be will not work for 30 GeV threshold 
and huge MAGIC camera. 

 

Figure 4. Comparisons of different image parameter subsets 

In the October 1999 report first attempts were described to use all pixel information instead 
of parameterized first moments of the image. MAGIC images expected to be too detailed and 
discrepant to be reduced to first moments only. We’ll lost valuable discriminative information 
washing out all “islands” and leaving only central spot. 
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Figure 5. Comparison of the shape and orientation parameter distributions for MAGIC and Whipple 
ACT 
 

 
Figure 6. Two-dimensional scatter plots of MAGIC and Whipple nontrivial correlations 
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3.6  CONCLUSIONS 

More than a decade experience with ACT background rejection techniques proved: 
A-posteriori methods of background rejection are superior to any modification of the a-

priory methods, despite what exotic method of classification is used. Neural Network technique 
can outline complicated shape of gamma-domain improving results obtained with super-cut 
method; 

Among a-priory method Bayesian decision rules with nonparametric density estimation 
provide better results, especially when estimate variance reducing techniques are used; 

It is not useful to add big list of parameters in subset for background rejection – there is no 
results reporting significant improvement comparing with “classical” combination shape & 
orientation parameters; 

For the ACT’s with huge matrices combined with low threshold “classical” methods using 
Hillas parameter aren’t any more optimal, new methods utilizing the pixel information in all 
details should be developed and used for background rejection. 

A few minor comments: 
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CHAPTER 4. 
THE NEURAL INFORMATION TECHNIQUES 

4.1  FEED-FORWARD NEURAL NETWORKS 
Feed-Forward Neural Networks (FFNN) represent very simple structures composed of 

processing elements (nodes) and connections (weights). FFNN belongs to the general class of 
non-parametric methods that do not require any assumption about the parametric form of the 
statistical model they use. 

The central issue of FFNN is implementation of the bounded mapping (Hecht-Nielsen, 1990): 
𝑓: 𝑣 ⊂ 𝑅È → 𝑅Þ                  (4.1) 

from a bounded subset ν of n dimensional Euclidean space to a bounded subspace f [V] of m 
dimensional Euclidian space (usually n > m ). 

The special case of such mapping when m = 1, constitutes the classification problem. 
Usually it is possible to define a probabilistic measure on V and write down the probability 
mixture model in analogy with (1.4). 

Of course, for real live problems it is impossible to define non-overlapping division of V 
corresponding to different categories, but using the examples of mapping action, a Network 
configuration can be tuned to minimize the misclassification errors near to minimal achievable 
Bayesian error (1.22). 

The net architecture consists of L layers each has K nodes. The first layer consists of N 
elements that simply accept the components of input vector v and distribute them, without 
modification, to the all of the nodes of the second layer. The nodes of the second layer 
(synapses) calculate a weighted sum of all inputs and then transform it to some nonlinear 
(sigmoid) function. This output is distributed again to all nodes of the third layer, and so on till 
the output layer with M nodes is reached. The output of a FFNN can be used directly for 
classification and estimation purposes, as well as for the generation of the control signals. 

Note, that FFNN can be regarded as a non-linear combination of several transformation 
matrices, with entries (denoted as weights) adjusted in the training phase by a least square 
minimization of an error function. The analytic form of the final transformation is very difficult 
to write down, due to sophisticated hierarchical multiplication of weights and nonlinearity's. 
Therefore we'll treat f function rather as an operator (algorithm), and not as analytic function, 
whose parameters have to be fitted. 

The usage of more general structures of input-output relations is the main advantage of 
FFNN over classical regression analysis. The Neural Networks are free of dependency on linear 
superposition and orthogonal functions and provide a significant increase in ability to 
approximate a function. The theoretical proof of it is the Kolmogorov's theorem (Kolmogorov, 
1957), concerning the ability of representation of an arbitrary continuous function with three 
layered Neural Network. 

The basic computing element in a  FFNN is a node (formal neuron). A general i-th node 
receives signals from the outputs 𝑂5

cof the all neurons of the previous layer: 

𝐼𝑁5÷ÅG = 𝑇5 + ∑ 𝑊5c
÷Áùú8�(÷)

cFG × 𝑂c÷𝑖 = 1,𝑁𝑂𝐷𝐸𝑆(𝑙 + 1), 𝑙 = 1, 𝐿 − 1     

(4.2) 
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where the threshold 𝑇5 and connection strengths (weights) are 𝑊5c
÷  parameters associated with the 

node i, I is the layer index, L is the total number of layers, NODES (l ) is the number of neurons 
in the l -th layer and 𝑂5

cis the output of the j -th neuron in l -th layer. The index j corresponds to 
the higher layer and the index i to the next layer. The total number of searching net parameters 
(weights) equals: 

𝑁𝑇𝑂𝑇 =>𝑁𝑂𝐷𝐸𝑆(𝑙)
7

÷F�

+>𝑁𝑂𝐷𝐸𝑆(𝑙)
7zG

÷F�

𝑁𝑂𝐷𝐸𝑆(𝑙 + 1) 

                                                                                                                    (4.3) 

The output of the neuron is assumed to be a simple function of its input; usually it is formed 
by sigmoid function: 

𝑂5÷ =
G

(GÅióýþ3
ÿ
)
, 𝑖 = 1,𝑁𝑂𝐷𝐸𝑆(𝑙),				𝑙 = 2, 𝐿                  (4.4) 

                             

where 𝐼𝑁5÷ is the input of the i -th neuron in the l -th layer. 
The multidimensional feature vector entering the first layer is translated from input through 

hidden layers to the output nodes. Therefore FFNN provides the mapping of a complicated input 
signal to the class assignments. 

For classification purposes this mapping takes a special form with aim to "shift" different 
classes of TS from each other as much as possible. 

Therefore the "goal" output Ogoal (k ) for events of the k -th category could be chosen as 
follows: 

𝑂P
ÝÇÜ÷ = PzG

!zG
, 𝑘 = 1,𝐾                (4.5) 

where K is total number of classes. Of course, it is possible to define another set of "goal" 
values. 

In the case of two classes, i.e. signal and background events, the "goal" outputs, as one can 
easily see, are equal to zero and one. The actual events classification is performed by comparing 
the obtained output value with the "goal" one. We expect, that the data flow passing through the 
trained net will be divided in two clusters concentrated in the opposite regions of the (0, 1) 
interval. Choosing an appropriate point in this interval (the so-called decision point c), controls 
the relation between two kinds of misclassification committed by decision rule), the 
classification procedure can be defined: an event with an output greater or equal than the 
decision point is attributed to the background class, while all the other events - to the signal 
class: 

𝑂(𝑢) �< 𝑐 → 𝑢	is	classifed	as	signal
≥ 𝑐 → 𝑢	is	classifed	as	background,#                   (4.6) 

where O(u) is the output node response for a particular experimental measurement u. 
This decision rule is a Bayesian decision rule, therefore the output signal of a properly 

trained feed forward neural net is an estimate of the a posteriori probability density (Ruck et al., 
1990) . 

For the multi-way classification one can define a set of non-overlapping bounded intervals 
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in (0-1) for each category. This sequence of bounded non-overlapping sets Ok ,k = 1, K , along 
with the chosen "goal" values (located within corresponding subset), will determine the mapping 
into the K  class labels: 

𝑂(𝑢) ⊂ 𝑂P → 𝑢	belongs	to	kò$category.                        (4.7) 

The objective (error) function to be minimized is simply the discrepancy of apparent and 
target outputs over all training samples (so called classification score): 

𝑄 = >
!

PFG

>𝜔PR𝑂P
c − 𝑂P

ÝÇÜ÷T
�
,>𝜔P = 1.
!

PFG

6õ

cFG

 

                        (4.8) 

where 𝑂𝑘
𝑗  is the actual output value for the  j -th training event, belonging to the  k -th class, and 

the 𝑂𝑘
𝑔𝑜𝑎𝑙 is the target value for the  k -th class output, where  K  is number of categories, and  

Mk is the number of examples for the kth class. 
The 𝜔𝑘 weight coefficients control the "contribution" of each particular class of TS to the  
overall error function. For the primary cosmic ray nuclei type identification by EAS 
observables, usually intermediate nucleus with masses between the lightest (proton) and 
heaviest with significant abundance (iron) are trained much worse compared with edge classes. 

Among ANI training modes there are two possibilities of checking the classification 
accuracy of middle categories. First of all we can enlarge the category acceptance region  Omiddle , 
(a posteriori solution) (4.7), and second - the corresponding weight value in error function could 
be enhanced before starting net training (a priori solution) (4.8). This  two possibilities provide 
flexible tools for obtaining desired balance between signal acceptance and background rejection, 
between purity and efficiency. 
 
4.2  NN LEARNING PROBLEM 

Currently there is no universally accepted theory of the predictive learning. Statistical 
learning theory, developed by V. Vapnik (Vapnik, 1979), based on theoretical analysis of 
Empirical Risk Minimization (ERM) is a theory for nonparametric dependency estimation with 
finite data. The Vapnik-Cervonenkis (VC) theory drives necessary and sufficient conditions for 
consistency of generalization from finite set of examples. The generalization ability of a learning 
algorithm depends both on the possibility to find the particular function describing  the 
examples, and on the measure of the complexity of the used family of approximated functions. 
Classical notions of complexity (number of free parameters or degrees of freedom) fail to 
account for applications to the functional families with infinite number of members, like Neural 
Networks models. The VC theory, introducing the so-called VC dimension (capacity) as a 
measure of complexity, can deal and specify functional families ever with infinite number of 
members. Therefore the VC theory provides conceptual framework for the setting bounds for 
model complexity control. The issue of the model complexity control is of crucial importance 
for the practical application of learning algorithms. Of course, there is still much work needed to 
bridge the gap between theory and practical applications. However, such empirical approaches 
for selecting the optimal Network solution to avoid overfitting problem, as prediction risk 
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estimation and median networks committee could be addressed in rigorously defined 
mathematical scope. Neural models capture the statistics of processes directly from data vectors 
– collection of "pseudo-experimental" variables, corresponding to all significant variations of the 
model input parameters. 

Neural methods are universal and can deal with very big input vectors. A common 
complaint about nonparametric techniques is the dependence of the results on the purity and 
finiteness of training sets (small training samples effects). However, due to the inherent robust 
characteristics of Neural Network (generalization ability), the results from neural analyses are 
relatively insensitive to modest impurities in the training sets. 
 
4.3  SETTING OF THE LEARNING PROBLEM 

The overall scheme of learning from examples can be defined as following (Vapnik, 1999): 
1. random event generator, drawn independently from a fixed but unknown distribution 

mixture; 
2. a supervisor (absolute decision rule) that returns an output vector for every input vector, 

according to a unknown, but also fixed conditional distribution function; 
3. a learning machine (algorithm) capable to implement a number (may be infinite) of 

different approximation functions. 
The problem of learning is that of choosing the appropriate set of functions, and then 

particular member of this family, which predicts the supervisor's response in the best way 
(optimal decision rule). The selection is based on the training set (sample), of independent and 
identically distributed observations presented to the supervisor. 

Our fundamental assumption will be that we can generate examples of mapping f (V) by 
detailed Monte-Carlo simulation of multidimensional random variables ui ,i = 1, M in 
accordance with assigned probability measure on ¿ initial parameters space. 

A primary advantage of mapping networks over classical statistical analysis methods is that 
the FFNNs have more general (algorithmic) functional forms than classical statistical methods 
can effectively deal with (Hecht-Nielsen, 1990). The FFNNs are free from depending on linear 
superpositions or orthogonal functions and can mimic sophisticated stochastic mechanism 
whereby the Nature generates the data. Therefore, in contrast with classical classification 
problem, we've to specify not the particular member of known analytic family  of functions 
rather the non-parametric algorithm (classificator) which generalizes the unknown mapping 
rule, implementing learning strategy on the training sample. The classification learning strategy 
will be based on the fundamental notion of the generalization.  

The strategy connected with the Prediction Risk estimation that reuse data and gives 
unbiased estimate ever for small sample sets, is generalization of one-leave-out-for-the-time 
estimate. 
 
4.3.1  NEURAL ESTIMATION (LEARNING REGRESSION FUNCTION) 

In the first section of chapter we considered the classification mode of the neural mapping 
(4.1). The recovering of the unknown functional dependence is another realization of neural 
mapping possibilities implemented by FFNN. This problem is of vital importance for EAS 
experiments for solving one of two interconnected problems - energy spectra and mass 
composition of the primary CR flux. And if the classification statistical model is appropriate for 
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mass composition studies, the learning of regression function is more appropriate for energy 
estimation. 

Of course, we can define the mass estimation also as regression model and, visa-versa, the 
energy estimation - as classification of energy into preselected bins. Whereas, we have to keep in 
mind that this division is in some sense arbitrary. 

Our fundamental assumption will be that we can generate examples of mapping 𝑓(𝑣) by 
detailed Monte-Carlo simulation of multidimensional random variables ui ,i = 1, M , in 
accordance with assigned probability measure on  I initial parameters space (1.3). 

The bounded subspace of I, e.g. simulated primary energies, will be determined by the 
installation threshold and acceptance and flux intensity (the information on the steeply fallen 
energy spectra will also be incorporated in preparing of the simulation trials). 

The most common drawback in FFNN performance is the limited number of training and 
test samples. Usually, in CR physics applications we can't simulate enough simulation trials, 
especially for most interesting ultra-high energies. And, therefore, we never can be sure that we 
use sufficient number of examples to learn a general problem and not the specific training data 
set. 

As we are not sure that training samples used reflect all variability of physical processes, 
learning of specific selected examples too well is not desirable. What we need is to generalize 
from the used training set to entire problem. 

Therefore, the strategy, checking the expected performance of FFNN during training is of 
crucial importance. 

The strategy, proposed in (Barron, 1984) is connected with the prediction risk as 
performance measure. In general, particular FFNN model can be specified (indexed) by the λ 
parameter: 

𝜆 ⊂ Λ ≡ (𝑉, 𝐺,𝑊)                       (4.9) 

where 𝑉 ⊂ 𝑣 notes a chosen subset of variables from the set of all possible variables 
(measurements)  V; 
G is a selected architecture from the class of possible architectures G; and W is the set of net 
parameters (weights). 

The prediction risk P(λ) is defined as expected net performance on a finite test set:  

𝑃(𝜆) ≈ 𝐸 *
1
𝑀
>R𝑡c∗ − 𝑂+(𝑢c∗)T

�
6

5FG

, 

                                                                                                                                (4.10) 

where R𝑡c∗, 𝑢c∗T weren't used in training, 𝑂+ is the trained network output. 
The strategy exists in the selection of the particular 𝜆 from the model space Λ , which 

minimizes an estimate of the prediction risk. 
The procedure of the prediction risk estimation that reuse data and gives unbiased estimate 

ever for small sample sets, is connected with the generalization of one-leave-out-for-the-time 
estimate used in previous chapter for Bayes risk estimation (1.25). The k-fold cross- validation, 
introduced by Geisser (Geisser, 1975) and Wahba (Wahba, 1990), instead of leaving only one 
event, deletes larger subsets from training sample. Let the training sample R𝑃S ≡ (𝑡c, 𝑢c), 𝑗 =
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1,𝑀T be divided into k randomly selected disjoint subsets of the equal size Mk   = M / k, denoted 
by  𝑝]. And the �̂�5 will denote the training sample with deleted i — th subsample  𝑝l5 .Then the 
cross-validation mean square error (MSE) for the selected subset  𝑝l5- is defined as: 

𝑀𝑆𝐸pS3(𝜆) =
1
𝑀P

> -𝑡c − 𝑂+,pS3R𝑢cT.
�

R/a,0aT⊂']3

 

                           (4.11) 
and 

𝑀𝑆𝐸(𝜆) =
1
𝑘
>𝑀𝑆𝐸pS3(𝜆)
P
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                                     (4.12) 

Typical choices of k are 5 and 10. An useful modification of cross-validation mean square 
error, penalizing complicated networks comprising many hidden units, is the Akaike's final 
prediction error (Akaki, 1970). For large enough training sets it takes following  form: 

𝑃(𝜆) ≡ 𝑀𝑆𝐸(𝜆) -1 + 2Á�ù�
6
.                             (4.13) 

where NTOT is total number of networks weights (4.3). Just this expression is recommended by 
authors of (Barron, 1984) as an estimate of prediction risk. Estimates of the prediction risk offer 
a sound basis for assessing the generalization performance of the model and can be used as a 
tool for architecture selection and constructing the stopping rule. Therefore, it is important to 
check the training results not with the "training error", but with the "generalization error", 
represented by the prediction risk. 

Below we consider the scalar regression function case, but all the results obtained can be 
used also for the vector regression function learning. FFNN with appropriate defined error 
function was used for the simultaneously primary energy and mass estimation. The following 
function have to be minimized: 

𝑄 =>𝜔c

6

cFG

𝑔R𝑡c − 𝑂cT,>𝜔c = 1
1

2FG

 

                                   (4.14) 

where Οi is the vector output of the FFNN last layer (no sigmoid function is implemented for the 
nodes in the output layer!) and ti is the vector of parameters used in simulation (primary mass 
and energy of "pseudo-experimental" event), and ωi   highest energy events get higher weights). 
is the event weight (usually the highest energy events get higher weights). 

A weighted quadratic metric is used as a measure of discrepancy of actual and "true" 
regression function values: 

𝑔(. ) ≡ 𝛼 -𝑚𝑎𝑠𝑠R𝑢cT − 𝑚𝑎𝑠𝑠R𝑢cT.
�
+ (1 − 𝛼)(𝐸VR𝑢cT − 𝐸R𝑢cT)�                          

(4.15) 
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The α coefficients are changing during training cycles to provide stable and reliable recovery 
of both energy and mass. By setting a value to 0 and 1 we have possibility to estimate first 
energy, and then, grouping events in energy bins - estimate the primary mass. And visa-versa, 
first estimating the mass, then estimate the energy spectra for different species of cosmic ray 
flux. 

 
4.4  TRAINING  ALGORITHMS 

The only information to train network for nonlinear mapping is contained in a priory given 
pairs - (ti ,ui ),i = 1, M , where M is the number of training events. 

During the minimization procedure the calculated differences between the actual network 
output and the desired output are used to adjust the weights. 

The back-propagation (BP)(Rumelhart et al., 1986) algorithm of neural network training is 
one of the most important historical developments in neurocomputing. The simple rule (based 
on gradient descent) of weights updating after processing of one or more training examples in 
principle will lead to arbitrary small mean square error of function approximation. The family of 
BP algorithms is realized in numerous packages, with the JETNET package being most popular 
in HEP community (Petersen et al., 1993). 

Minimizing of the eq. (4.8) with gradient descent is done in (Rumelhart et al., 1986): 

𝑊/ÅG = 𝑊/ + Δ𝑊/                                     (4.16) 
where 

Δ𝑊/ = −𝜂 45®
46

= −𝜂∇𝑄/                                (4.17) 

the learning rate (step size) η is rather difficult to choose appropriately. A good choice depends 
on the shape of the error function. A small learning-rate will result in long convergence time on 
a flat error- function, whereas a large learning-rate will possibly lead to oscillations, preventing 
the error to fall below a certain value. 

Another problem with gradient descent (Riedmiller et al., 1993) is the "contra-intuitive" 
influence of the partial derivative on the size of step. If the error-function is shallow, the 
derivative is quite small, resulting in a small step. On the other hand, in the presence of steep 
ravines in the energy landscape, where cautious steps should be taken, large derivatives lead to 
large steps, possibly taking the algorithm to a completely different region of weight space. An 
early idea, introduced to make learning more stable, was to add a momentum term 

Δ𝑊/ÅG = −𝜂 45
46

+ 𝛼Δ𝑊/                       (4.18) 

where momentum parameter a < 1 scales the influence of the previous step on the current one. 
The local minima can to a large extent be avoided by introducing random noise σ to the gradient 
descent updating rule of eq.(4.17). This is conveniently done by adding a properly normalized 
Gaussian noise term 

𝛥𝑊 = −𝛿𝛻𝑄 + 𝜎                                      (4.19) 

which we refer to as Langevin updating, or by using the more crude non-strict gradient descent 
procedure provided by the Manhattan (Peterson et al., 1989) updating rule: 
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Δ𝑊 = −𝜂 ⋅ sgn ;45
46
<                           (4.20) 

It should be noted, that elimination of the harmful influence of the size of partial derivative 
on the step and replacing the step by a constant update value 8 forms a new BP family member 
the "Resilient back-propagation", or "Rprop" (Riedmiller et al., 1993A). 

The basic principle of Rprop is the direct adaptation of the weight update values δ 
individually for each neuron (connection). Rprop modifies the size of step directly by 
introducing the concept of resilient update-values, independent on the value of the partial 
derivatives. 

The theorems, proving the consistence and unbiasness of the BP training algorithm is the 
existence theorem only, it guarantees the ability of a multilayer network with the correct weights 
to unbiased approximate an arbitrary function, it does not demonstrate how to learn this weights 
using available training samples. 

Real world problem solving with BP net training (as with any NN training algorithm) 
requires several input parameters whose values are to be  assumed. 

First of all it is the net architecture: number of hidden layers and number of nodes. It is 
important to realize that although the Kolmogorov's theorem proves that "one hidden layer is 
enough", in real-world problem solving, it is often essential to have two or three hidden  layers. 
If we limit ourselves with single hidden layer an impractical huge number of a nodes would be 
required, whereas an adequate solution can be obtained with a tractable network size by using 
more than one hidden layer. Also the initial range of weights must be specified and size of the 
momentum term should be selected. 

The choice of step size and the number of training epochs on learning before weight 
updating influence heavily the quality of obtained solutions. For instance the possibility of 
getting trapped in a local minimum is enhanced for a wrong net initialization. The problem of 
restricting the parameter space to a region which ensures convergence to the global minimum 
remains thus to a large extend unsolved (Sinkus, 1995). 

The evolutionary algorithms, introduced in the next section seem to be more appropriate for 
the search of the "best" solutions in an extremely large spaces for the wide range of underlying 
error-function profiles. 
 
4.5  EVOLUTIONARY ALGORITHMS 

Genetic Algorithms (GA) and Evolutionary Programming (EP) are both search techniques 
based on an simulation of the evolutionary processes. The challenge is to find "good solutions" 
(chromosomes) in very large search spaces. 

GA employ the successive reproduction among an assembly (pool) of fittest parents using 
genetic operations such as crossover, inversion, mutation and selection with predefined rules 
forming the next generation and the search stopping. Different m:n scenarios (m - number of 
parents, n - number of offsprings) can be realized. 

EP can be treated as a special case of GA, namely 1:1 scenario. 
The current best chromosome (parent) undergoes the zero-mean phenotypic Gaussian 

mutation (realized by the Random Search (RS) algorithm with return at an unsuccessful step). 
The solutions obtained are very much dependent on the initial population. It is not easy to decide 
if the GA can be started from a completely random initial pool (like EP), or it is worth to spent 
significant efforts to find "acceptable" solutions using more "simple" methods like EP or BP. 

During the search most parameters had to be determined empirically. The relationship 
between tuned search parameters usually is not clear and the strategy of parameter selection 
turns out to be a nonlinear multivariate optimization problem itself. Also it is very difficult to 
understand how a certain solution is reached and explain why it is the "best" one. 

The multidimensional error surface is very complicated and it is very hard to visualize it and 
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acquire any exact information about it. A basic fact is that there exist many global minima. This 
is because there are many weight permutations that yield exactly the same overall network 
input/output relation (Hecht-Nielsen, 1990). The same words could be said about the local 
minima. Beyond these facts, very little is known. The following questions still wait answering: 

How large are the basins of attraction for each of different minima? 
What is the shape of the boundary between attractive basins? 
We perform the following strategy of the development of net training technique: 
• train networks of different architectures with various methods and then use all 

information to integrate acquired knowledge in the final "best" solution; 
• decrease as much as possible the number of free parameters of network; 
• use procedures of atomization of parameter tuning; 
• use prediction risk as net performance measure; 
• develop methods of visualization of training procedures to explore the multidimensional 

error surface. 
The neuron mode of ANI (Analysis and Nonparametric Inference, nonparametric statistical 

analysis package developed in Cosmic Ray Division of Yerevan Physics Institute) (Chilingarian, 
1998) package was implemented for crossover modeling in net training. First, the number of 
particular net node is randomly chosen and then from an "infinite pool" of genes a new gene is 
selected and introduced at the same place in the net. If the error function decreased, the new 
chromosome (collection of genes) survived and a new random step is performed. If not - the 
selected gene is excluded, and another attempt is performed. If we remember that each gene 
(neuron, node) in the net outlines some part of nonlinear decision surface in multidimensional 
feature space, it will be easy by combining such piece-wise surfaces arrive to a better decision 
boundary separating different classes from each other. 

This kind of net training seems to be much more effective than simple Random Search (RS) 
algorithms, also realized in ANI. The multi and single modes of ANI are designed for random 
search correspondingly in all net parameter space and - to make random change of also 
randomly chosen net parameter. Different net training scenarios combine different search modes 
with different search parameters. 

For fast scanning of the net weights space a deterministic algorithm is implemented. The 
error function is calculated in each point of the multidimensional quasi-random sieve (Sobol, 
1979) uniformly filling the JV-dimensional cube (N is the total number of NN weights). 
Positioning the sieve center at the previously found best point, and subsequently decreasing 
sieve size, we'll arrive to the "best" net. 

The different strategies of RS algorithm implemented in ANI will be described in more 
details in section 4.8 

4.6  COMMITTEE OF NETWORKS 
4.6.1  ENSEMBLES OF NETWORKS 

The alternative to genetic algorithms approach of integration of different obtained networks 
in one "best" solution, is the networks "committee" or "ensemble" approach. 

This approach consists in using not a single network, but an ensemble of networks, each of 
which have been trained with different methods and, may be, with different data-sets. The basic 
idea is to classify a given input pattern by obtaining a classification (or estimation) from each 
member of committee and using an integration scheme make a final estimate with some 
collective decision strategy (Hansen et al., 1990). The most important is to understand the 
"committee" principle of integration of information acquired from different networks trained 
with various parameters. 

It is common practice in the application of neural information technologies to train many 
different candidate networks and then to select the best, (on the basis of performance on an test 
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data set) and to use further only this network. 
There are three disadvantages with such an approach. First of all, if we select the best 

network among many trained, all of the efforts involved in training the remaining networks are 
wasted. 

Second, the network with best performance on training data set can be over-trained, and 
third, even if the over-training effects are controlled, the generalization error (of particular 
network from all available) on the test data might not be the smallest. Different networks trained 
on the same training data set but with different training scenarios contain different information 
on  the general nature of considered phenomenon, combination of these networks can give more 
generalized representation of these data than the single "best" network. 

Usually this procedure is called a committee of networks. In simplest case, when all 
networks are equally contributed, i.e. the final output is the average of all outputs of different 
networks, it is called a mean committee. 

Another type of committee - the median committee takes as final estimate the median value 
of variation row of single outputs obtained with different networks. 

Using the committee of networks approach and the simulated data we demonstrate that the 
reduction of estimation error is generally obtained even in case of small number of committee 
members. If there are several trained networks, to find the best one for a problem solution, it is 
always sensible to make a committee of that networks. Therefore future investigations will 
concern the synthesis of different networks trained with applying various scenarios and methods 
of global minimum reaching. 
 
4.6.2  THE COMMITTEE PROCEDURES 

There are many different possibilities to make a committee of networks. We'll consider two 
types of integration - the averaging and the median committees. The first procedure is a simple 
averaging of all neural networks outputs and taking this mean as a final estimate. In ideal case, 
when the distribution of error of each trained network has zero mean (unbiased training) and all 
errors of different networks are uncorrelated, it was shown that even for  the simplest averaging 
committee can improve the overall performance: Ecom = Eav/L is, where Ecom  is the committee 
error, Eav- averaged error of all networks and L is the total number of different networks 
(Bishop, 1995). In practice, the reduction of estimation error is much smaller because the errors 
are highly correlated. However, it is easy to show that the committee process cannot produce an 
increase of the expected error  𝐸𝑐𝑜𝑚 ≤ 𝐸𝑎𝑣. 

 

  
 

We might expect that some members of the average committee will make better predictions than 

Figure 8. Contributions of different 
networks to final estimate (5 nets) 
 

Figure 7. Contributions of different 
networks to final estimate (3 nets) 
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other members. We would therefore expect to be able to reduce the error still further if we give 
greater weight to some committee members than to others. But the better prediction on training 
sample does not mean better prediction on control sample, so we do not know to which members to 
give greater weights. To automate the optimal weighting of neural networks we use the ordered 
statistics technique and call that procedure as a median committee, in analogy to the nonparametric 
estimate of the adaptive multivariate probability density function, introduced in (Chilingarian, 1989). 

This procedure can be explained as follows: trained networks are implemented for the 
independent (control) data set and then the output values of all different networks are ordered in 
increasing (or decreasing) sequence and the middle (median) value of this sequence is taken as 
an final estimate. If L is an odd number the median of variation row is selected, if L is an even 
number, the half sum of two middle outputs is taken. 

In this case again only one network's output is selected, but for each particular event as a 
median will be selected each time different network from all available networks. So, all 
networks are implemented in estimation process, but each of them as many times as its output 
becomes the median of variation row of all outputs. 

The median committee looks somehow like weighted mean committee, because each 
network has a different contribution to the generalized final output. The problem how to give the 
weights to networks is avoided, because the predictions are automatically weighted according to 
the median choosing. For each individual event the networks giving larger and smaller outputs 
(placed before and after the median value) are weighted with 0. And the proportion of "selected" 
networks, calculated over the control sample gives the overall weight (quality) of different 
networks (Figure 7, Figure 8). 

Thus, the main attention will be paid to the median committee procedure. 
 
4.6.3  RESOLVING OF THE MIXTURE OF ANALYTIC MODELS 

For the demonstration of the advantage of committee estimator comparing with the single 
best network the combined regression function is used, which consist of three different analytic 
models. The regression function in each model is a certain distribution of means of the five 
dimensional Gaussian populations: 
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                                                                                                                        (4.21) 
 

where  x j is the input vector, x = [x1, x2, x3, x4, x5 ]. 
In the first model Mj is distributed in 0 — 5 interval according to exponential low, in  second 

and third models it is distributed by Gaussian and power lows respectively: 

𝑀c(1) = ln?
1
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                                                                                                                                  (4.22) 
𝑀c(2) = 𝑁(𝜇, 𝜎)                                          (4.23) 

𝑀c(2) = 𝑁(𝜇, 𝜎)                                          (4.24) 
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where  a = 2, b2 = 5, b1 = 0, μ = 2.5, σ = 1, j = 1, 10000           
So, we have three different training data sets, each of them represents the general data set 

only partly. This is a common case, when we are forced to use a Monte-Carlo simulation of 
some complicated phenomenon, when no a priory information can be assumed to describe 
exactly the underlying multidimensional probability distributions. Three different networks 
trained by these three models are applied to estimate the true regression function of the models 
mixture, and the results are compared with the committee results. 

 
Figure 9. Distribution of regression function and input parameters (mixture of models). 

The statistical model to be considered is the mixture of these three models: in 0 -1.7 - 
exponential distribution 1.7 — 3.3 - Gaussian distribution and 3.3 — 5 - power distribution 
[eq.(4.25)], as shown in Figure 9. 
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(4.25) 

On the Figure 10 the estimation results by three different networks are plotted. It is easy to 
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see that even for the best network there is significant bias of the estimates. Comparing these 
results with the ones depicted in Figure 11, where the estimation errors for different networks 
and committee are plotted, one can see that the committee procedure leads to unbiased 
estimation with higher accuracy. 

From Table 5 one can see that the reduction of estimation error is about 10% and the median 
estimator gives better result than mean committee. 
 

 
 

Figure 10. The regression function estimation by different networks trained on different models:                
1 - exponential, 2 - Gaussian, 3 - power 
Table 5. Root mean square errors of 3 different model networks and committee 
 

 Net1 Net2 Net3 Median Mean 
RMSD 0.4536 0.4584 0.5688 0.4168 0.4455 
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Figure 11. Mean and median committee  results 
 
4.7  ESTIMATION OF THE GENERALIZATION ERROR IN NEURAL 
CLASSIFICATION TO MULTIPLE CATEGORIES 
4.7.1   NET TRAINING AND GENERALIZATION ERRORS 

The most common drawback in Feed-Forward Neural Networks (FFNN) performance is the 
limited number of training and test samples. Usually, in many NN applications we do not have 
enough simulation trials, therefore, we never can be sure that we use sufficient number of 
examples to learn a general problem and not the specific training data set. 

As we are not sure that training samples used reflect all variability of the considered 
phenomenon, learning of specific selected examples too well will effect the so called over- 
training, when the NN performance on training sample is much better than on the independent 
(test) sample. Therefore, it is important to check the training results not with the "training error", 
but with the "generalization error", represented by the prediction risk. 

Estimates of the prediction risk offer a sound basis for assessing the generalization per- 
formance of the model and can be used as a tool for architecture selection and constructing of 
the stopping rule. 

To demonstrate the over-training effects we have trained a rather complicated network (with 
2::4::3::1 architecture) for the two-way classification of a few (100 events per class) events. The 
2 dimensional samples from Gaussian populations N(0,l) and N(l,l) were used. The 
corresponding Bayes Risk equals RB = 0.2415. 

After reaching Bayes risk value on 1000-th iteration, continuation of training leads to the 
"over-training". The following decrease of error function is due to the tuning of the decision 
boundaries and reflects only the peculiarities of the finite random sample, and not, required 
better approximation of the underlying probability density functions. Therefore over-training 
doesn't improve the "generalization" abilities of trained network. 

This fact is demonstrated by the classification with obtained networks, of much bigger 
control sample (2000 events from each class). As it is seen from Figure 12 error function for 
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control sample (generalization error), didn't follow the decrease of training error after reaching 
the Bayesian limit. Moreover, it abruptly increase on the minimum of training error, proving that 
the over-training results in random net couplings, unable to approximate general rule. 
 

 

 

Figure 12. Training and generalization errors         Figure 13. Classification  boundaries for                       
                                                                                                                         over-trained network 

The demonstration of the embedded discriminative boundaries, obtained with over trained 
network is shown on the Figure 13. The net of the same configuration was trained with only 20 
events (10 from each class, depicted with the different colors on the figure). 

As one can see, only 3 events are misclassified, therefore the error function takes the value 
1.15 (which is less than RB=0.24). 

Continuation of the training will shift the decision boundaries to decrease the 
misclassification down to 0, but of course, the generalization capability of such network will be 
very poor. 

4.7.2   THE CROSS-VALIDATION PROCEDURE FOR FINAL PREDICTION                            
ERROR (FPE) ESTIMATION 

Described in section 2.7 technique with appropriately defined error function was used for the 
training of NN with different architectures for the 3-way classification problem. The FPEs of 
these networks were estimated for different sample sizes. The aim was to estimate the 
generalization capabilities of different networks for different sample sizes and to select an 
"optimal" configuration of NN for the given training sample size. The considered problem was 
to classify the random events from two-dimensional Gaussian populations with means equal to 
1, 2 and 3 for the first, second and third classes respectively: 

𝑓(�⃗�c) =
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,

                                                 (4.26) 

where  x j is the input vector, �⃗� = [𝑥G, 𝑥�]; j = 1...50000,  σ = 1 ; for all three classes. 
Six different samples with different sizes were used to train the five different NN for the 3-

way classification. Particularly, samples containing 100, 200, 500, 1000, 2000, and 5000 events 
per class were used. Five different NN architectures were constructed as follows: 2 input nodes 
and one output node for all configurations, and the number of hidden nodes varying from 2 to 10 
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nodes. The generalization capabilities (FPE) of NN with different architectures were  estimated 
for these sample sizes and compared with the training error. 

 

Figure 14. The training process of the NN with architecture 2:2:1, TS consists of 300 events (30 
validation events) 

For large enough training sets the calculation of the net performance by the one- leave-
out- for-a-time method can be much time consuming, therefore we have used a 10 — fold cross- 
validation for each sample size. Particularly, we use 10% of events as a validation sample (VS) 
and remaining 90% as a TS. After the training process is finished (the maximum number of 
iterations is reached or some stopping criteria is applied), the removed 10% of events are 
returned to the TS and the next 10% of events are taken for the validation. So, each sample is 
reused for the training process 10 times until all events of the sample are subsequently removed 
and used for validation. 

Note, that in each trial of the cross-validation the VS events are different. The MSE for each 
VS is calculated by the formula (4.11), and the expected MSE for the given sample is calculated 
by formula (4.12) for both training and validation samples. Then the formula (4.13) 

is used to calculate the PR of NN on validation sample, this is used as the Final Prediction 
Error. 

Figure 14 and Figure 15 display the training error evolution for different sample sizes. From 
Figure 14 one can see that when the TS size is very small the over-training occurs even with  
the smallest NN architecture (the training error is decreasing during further training, while the 
error on independent validation sample is reached some local minima and then is increasing). 
Therefore for very small TS one could not expect to obtain good generalization, because the net 
weights are easily tuned to classify rather well the small number of training patterns. In such 
cases, the NN should not be trained with many training epochs (presenting the training patterns 
to the NN many times). The question, when to stop the training process, is still open, it depends 
on the particular problem to be solved, sample size and NN architecture. 

As it is easy to see from Figure 14, using the same sample and the same NN architecture, in 
different stages of the cross-validation procedure the over-training has occurred in completely 
different ways in terms of number of training iterations and training and validation errors. 

One possibility is to stop the training when the validation error starts to increase (or this 
increase is larger than some threshold value), but this criteria is not desirable due to the random 
character of the overtraining effect. As it is demonstrated on the Figure 15, the random increase 
of the validation error is occurred rather often. The curve of the validation error has many local 
minima, but during further training the error is decreasing and the best point in multidimensional 
space of the NN weights is obtained at the end of training process. 
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Figure 15. The training process of the NN with architecture 2:6:1, TS consists of 600 (above part) and 
1500 (bellow part) events (VS - 60(150) events). 

The acceptable technique for this purpose is not to apply any stopping criteria, but to apply 
the following procedure: 

• after each successful iteration of the learning process the net error (MSE) is calculated 
for the test sample; 

• if the test error value is less than the one obtained in previous step the NN weights 
obtained at the current training step are stored; 

• else, the NN weights obtained at the previous step are memorized; 
• at the end of the training process (when the maximum number of iterations is reached) 

the weights which gave a minimal error on the test sample are found and used as a final 
best weights for. NN. 

4.7.3  ESTIMATES OF FPE AS AN NET ARCHITECTURE SELECTION TOOL 

In previous section the procedure of the FPE estimation was described. This procedure gives 
an estimate of the FPE of different architectures using the same TS, but does not give any 
information about the error bounds of the estimated FPE. It is important to obtain not only 
unbiased estimate of the FPE but to estimate the errors of this estimation as well. With aim of 
this we have applied the cross-validation procedure for each of the 6 different samples 10 times, 
of course using 10 different (from the same general population) samples for each size. 

So, having 10 different estimates of the FPE for each network architecture we calculate the 
mean and the standard deviation of FPE. 

Figure 16 displays the dependence of the FPE on the used NN architecture for different 
sample sizes. As one can see from this figure for the smallest sample size (300 training events) 
the best NN configuration turns to be the net with 2 hidden nodes, because the training error is 
decreasing with increase of the number of hidden nodes, but the FPE is increasing dramatically. 
The remaining graphs on this figure show that when the sample size varies from 600 to 3000 the 
best configuration turns to be the net with 4 hidden nodes. 
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Figure 16. The dependence of the FPE and training errors on the number of hidden nodes in NN for 
different sample sizes. 

 
Figure 17. The dependence of the FPE and training errors on the number of hidden nodes in NN for 
different sample sizes (the case of very large training samples). 
 

On Figure 17 the same dependence as on Figure 16 is plotted for large sample sizes. It is 
easy to see that the best architecture is again 2:4:1. It is also easy to recognize that the FPE and 
training error values became closer in contrast with the Figure 16. Although the best FPE is 
obtained using the net with 4 hidden units, from the right graph of this figure one can see that in 
case of very large training sample (15000 events) all networks (except the smallest) give very 
near FPE and within the error bounds all networks have the same performance. 
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4.8   COMPARISON OF THE DIFFERENT ALGORITHMS OF NN TRAINING FOR 
THE PROBLEM OF CLASSIFICATION 

The Artificial Neural Networks represent a subset of the multivariate statistical analysis 
methods for function approximation and data classification, and they belong to the general  
class of non-parametric methods that do not make any assumption on the parametric form of the 
function to be modeled. These methods contain more free parameters, therefore they require 
more training data to achieve good generalization performance. 

The Net training methods are of wide variety. Each of them is designed to outperform others 
in such a drawback of the learning algorithms as the speed versus quality. 

The choice of the learning algorithm depends on many problem dependent factors, like the 
complexity of the problem, availability of the training set, real-time requirements, the cost of the 
losses (required quality of the solution). Hence it is not possible to give an unique decision on 
what strategy to follow. Nevertheless, the goal of each training algorithm is to achieve a good 
generalization performance relatively easy and fast (low resources requirements and efficiency 
of algorithm). 

The ANI statistical analysis program package (Chilingarian, 1998) contains a special section 
of artificial neural network models. Several strategies are implemented for the NN training for 
estimation and classification tasks. The main algorithm for NN weights updating is the so called 
Random Search (RS) algorithm, the second one is the deterministic algorithm based on Sobol's 
pseudo-random numbers. 

In the next section a short description of different strategies is presented. In section 4.8.2 the 
results of comparisons are discussed. 

4.8.1  RANDOM SEARCH LEARNING ALGORITHM 

The basics of NN learning problem and a description of NN regression and classification can 
be found in (Bishop, 1995), (Chilingarian, 1995), (Chilingarian et al., 1997A). Thus, we bring 
only a description of learning algorithms and strategies implemented in ANI package in short. 
The (RS) algorithm implements the following steps: 

1. The initial values of NN weights are chosen  randomly from Gaussian distribution with 
zero mean and small variance (µ = 0; σ ≈ 10−2 ) ; 

2. The random iteration step in multidimensional space of NN weights is performed from 
initial point to modify the NN weights. 

Three submodes of random search are implemented: 
• single mode - modifying the single random weight of NN; 
• neuron mode - modifying all weights of randomly chosen neuron;  
• multi mode - modifying all weights of neural network simultaneously* 

The alternation of weights is performed according to following: 

𝑉Ì⃗ 5 = 𝑉Ì⃗ 5zG + 𝑄5zG
' ∗ (𝑅𝑁𝐷𝑀 − 0.5) ∗ 𝛥𝑣; 𝑖 = 1,𝑁5/i�           (4.27) 

            where	𝑉ÌÌÌ⃗ 5	is the vector of NN weights obtained at i-th iteration step, Δ𝑣 is step size 
and  RNDM is a random number from [0-1] interval. The term 𝑄5zG

'  introduces dependence of 
value of random step on the already achieved quality function and controls the degree of this 
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dependence on achieved quality function, p=0,1,2... 
3. The objective (quality) function is calculating at each iteration step, by presenting all the 

training events to Neural Network: 

𝑄5 =
1

𝑀i(iÈ/¥
>(𝑂𝑈𝑇P − 𝑇𝑅𝑈𝐸P)¥'ii� ∗ 𝑊P
P

 

    k= l, Mevents,   speed =1,2       (4.28) 

      were 𝑂𝑈𝑇P is the actual output of NN, 𝑇𝑅𝑈𝐸P is the corresponding goal value of k-th 
input vector from training set, and 𝑊P is event weight. If speed=1, Q gives information on 
the bias of estimation; i f speed=2, Ä𝑄is the estimation error; 

4. If  Qi ≤ Qi-1 , then the vector 𝑉Ì⃗ 5 is kept as new weights of NN and next step is initializing 
from point 𝑉Ì⃗ 5  in multidimensional space of NN weights, otherwise-return to the 
previous point is implemented and a new random step is performed. 

The deterministic algorithm works as follows: 

1. a multidimensional hypercube with dimension d=Nweights and side A =∆v  is filled in such a 
way that the projection to any axis gives a uniformly distributed points (number of points in 
hypercube is equal to the number of given iterations) - so called pseudorandom numbers [90]; 

2. each "pseudorandom" point in this hypercube represents a vector of the NN weights, the 
network with such a weights is applied to calculate the quality function on a training 
sample, and the point which provides the smallest value of the quality function is taken as a 
vector of NN weights.  

Different search modes (single, neuron, multi) give a possibility to perform different training 
strategies, obtaining quite different points of multidimensional space of neural net weights, and 
allow to investigate symmetries of local minima in this space (due to very large dimensionality 
of NN weights space there are many symmetries (Hecht-Nielsen, 1990)). 

Both algorithms have many free parameters like the number of hidden layers in NN, number 
of hidden neurons in these layers, objective function to be minimized random step size in 
Random Search algorithm and the size of the hypercube in deterministic algorithm, number of  
training epochs and number of "pseudorandom" points used in RS and deterministic algorithms 
respectively. So the comparative study of different learning strategies in terms of speed and 
quality is of great interest, despite that we can use all methods in one session of training in 
different combinations. It is also worth to compare the performance of these algorithms with 
well known and widely used algorithms of Back Propagation (BP) (Rumelhart et al., 1986) 
family. One of the optimized BP algorithms was chosen, known as a Rprop (Riedmiller et al., 
1993A). This algorithm is known as one of the easiest in implementation and has only a few free 
parameters like the training rate (step size) and scale-up/down factors, which allow to use an 
individual learning rate for each iteration. It was reported (Schiffman et al., 1993) that the final 
results are not much sensitive to the scale factors, thus, the only essential free parameter 
remaining is the initial learning rate. In the same reference was reported that the Rprop 
outperforms all other back propagation learning algorithms both in speed and quality. The used 
program package was JetNet version 3.5, in which the Rprorp algorithm is implemented as well 
among many others. 
 

 

*One of the two submodes of multi mode, the so called deterministic algorithm based on pseudorandom 
numbers, was used  
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4.8.2   DATA AND PROCEDURES 

It is obvious that in order to compare the performance of the different learning algorithms, it 
is necessary to apply all of them to the same data and under the same conditions. The latest 
requirement is, of course, difficult to satisfy, due to the different parameters used by different 
algorithms, nevertheless it is possible and necessary to fix some free parameters same for all 
algorithms. 

To compare the performance of different learning algorithms, the 3-way classification 
problem was investigated. The "toy-problem" is selected in some sense our main physical 
analysis goal - classification of the primary CR flux into three categories (Chilingarian et al., 
1997), (Chilingarian et al., 1997A), (Chilingarian et al., 1999B), (Chilingarian et al., 1997), 
(Roth, 1999). 

Or in case of atmospheric cherenkov techniques to the classification of images initiated by 7 
quanta, hadrons or local muons. The neural classificators, particularly the Random Search 
algorithms were introduced and successfully applied for such kind of data analysis by A.A. 
Chilingarian since early 90's. In reference (Chilingarian, 1993) the superiority of neural methods 
for the 7 ray astrophysics data analysis to other methods was demonstrated. The above 
mentioned and also the following papers (Chilingarian, 1994), (Chilingarian, 1995), 
(Chilingarian et al., 1997B), (Aharonian et al. 1990), (Chilingarian, 1991), (Chilingarian, 1994) 
contain the description of techniques and application details for classification problem of 
different kind of HEP data. So, besides the very successful implementation of these strategies 
also their comparative study is of great interest. 

Events from 2-dimensional Gaussian populations with means (1,1), (2,2) and (3,3) were 
classified using NN with the same configuration - 2:6:1 for all algorithms. 2000 events per class 
were used for the training, 20000 iterations were done to train each network. In order to obtain 
and unbiased estimate of the performance the 10-fold Cross-Validation (CV) procedure was 
applied (see section 2.7.2 for procedure details). The 10-fold CV procedure was applied 10 times 
for each networks using independent data set each time, and the results were averaged over 100 
runs. This is of vital importance in order to estimate an averaged reliable performance 
(prediction) of network instead of obtaining a particular (random) solution by making one 
learning session. 

As a performance measure on control data set the geometrical mean per cent of the right 
classifications over 3 classes was used, and as a measure of speed the amount of the CPU time 
spent to make a 1000 iterations was used: Ä𝑅GG𝑅��𝑅QQ

R ≡ 𝑅��0i where  𝑅GG  are the diagonal 
elements of the misclassification matrix. Of course, another more informative characteristic of 
the algorithm speed is the number of iterations after which the best point (minima in quality 
function) in the multidimensional space of NN weights is found, and then the algorithm is 
converged (saturation of the quality function). Nevertheless, such a benchmark could be used 
when the Bayes risk is reached within the given number of iterations for all NN to be compared. 

Also the speedup of the algorithm convergence can be observed using different strategy 
within the given algorithm. An example of such case is the recommendation (Yao et al., 1999) 
to use the random numbers from Cauchy distribution (instead of the uniformly distributed 
random numbers) in formulae (4.27). The idea is, using random numbers from Cauchy 
distribution the probability of large random steps will be higher and it should yield to faster 
falling to minima of quality function. Such a comparison is also done, the neuron mode of RS 
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algorithm is tested with the usage of uniform random numbers and with random numbers from 
Cauchy distribution. 
 
4.8.3  COMPARISON RESULTS 

Table 6 displays the generalization performances of networks trained by different 
algorithms. The geometrical mean of the true classification rates over 3 classes is presented as a 
performance measure. 
Table 6 . Performances of different learning  algorithms 
 
 
 

 
The obtained performances are compared with results of Bayesian classification using 

Parzen's windows method for probability density estimation (Parzen, 1962). The mean per cent 
of the true classifications estimated by Bayesian method equals approximately to 67%. So, 
comparing the learning algorithms performances for this simple problem with linear decision 
boundaries with this value, it is easy to see that all modes of the RS algorithm give close results 
and the best is single mode. 

The Rprop algorithm, as one can see, is the last in "quality row". This result was rather 
surprising, therefore the classification performance in two-way classification was checked. Both, RS 
and Rprop have shown very good results - ~ 85% mean per cent of true classifications, as was 
expected. 

Figure 18 displays the learning process history for 20 NN trained with RS algorithm. Half of 
them were trained using uniform random numbers and the second half were trained using 
random numbers from Cauchy distribution. All parameters of the learning procedure and used 
data were the same, the neuron mode of RS strategies was used. 

 
Figure 18. The net training results using random numbers from Cauchy population and uniform ran-
dom numbers. 

From this figure one can see that the better weights are found quicker when using random 
numbers from Cauchy distribution, but this is observed only at the first 100-200 iterations. In 
both cases the near-optimum is found nearly at 1000-th iteration, so, it is difficult to make any 
conclusion on advantage of using Cauchy random numbers for chosen problem. It is necessary 
to make investigations on different tasks and different kind of functions to be able to make 

 RS(single mode) RS (neuron mode) RS(multi mode) Rprop 
RT 
 

66.5% 64.5% 61.4% 51.8% 
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definite conclusion of superiority of networks trained using Cauchy random numbers. 
 

 

                                      
More interesting is to investigate the performance dependence from the step size (learning 

rate). It is apparent that the performance of different modes of RS algorithm depends on this 
factor as opposite to Rprop. Thus, this dependence is investigated for three modes of RS 
algorithms in wide range of step sizes. 

Figure 21 shows the dependence of the performance measure from step size for different 
training strategies. It is easy to see that the classification results of NN trained in single mode 
depend on step size slightly and the larger steps are preferable, since the Bayes optimum is 
reached. The other two modes have the opposite behavior. It is apparent from this figure that up 
to 16 step size the results of all three modes are very close, but in case of larger steps the neuron 
and multi modes show very poor performance. 

 
Figure 21. The dependence of final performance from learning step size. 

The speed versus quality characteristic of these training strategies is also investigated. 
Figure 22, Figure 23, Figure 24, Figure 25, Figure 26, Figure 27 display the quality dependence 
from the number of iterations for different step sizes. As it is easy to see from first two figures 
the neuron and multi modes have a significant advantage as compared with single mode. The 
better points in multidimensional space of NN weights are found rather faster than in case of 

Figure 19. Quality function versus number of 
iterations in different CV stages for three 
modes of RS algorithm (small steps). 
 

Figure 20. Quality function versus number 
of iterations in different CV stages for three 
modes of RS algorithm (small steps). 
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single mode. When the step size becomes larger the situation changes, the number of iterations 
required to find a better points are reduced in single mode, and the performances of single and 
neuron modes are closer, while the multi mode get a bit worse (see Figure 22, Figure 23).In case 
of very large steps the situation dramatically changes for neuron and multi modes, the number of 
successful steps are very rare and for a long training time the near optimum solutions are not 
found. For the networks trained with multi mode this falling of the performance with increasing 
of the step size can be explained easily. Since this strategy is deterministic and the search 
procedure is performed in the multidimensional hypercube with side equal to the step size (see 
above), and the number of iterations (i.e. the number of predefined points in this hypercube) 
were fixed, in case of very large step sizes 10000 points in hypercube are very sparse and the 
probability to find a good point is not high. 

What we can conclude is that, in case of small step sizes the Bayes optimum is practically 
always reached by all three modes and the neuron and multi modes are very fast (~ 250 
iterations are required to fall down to satisfactory minimum in quality function) in finding of 
good point in multidimensional space of weights. Taking into account that the very large steps 
have no principal advantage over small ones, one can recognize that the neuron mode is the best 
in terms of quality versus speed ratio. 

The networks trained with single mode show the excellent quality within the same number 
of iterations in case of large steps as well as in case of smaller steps. This strategy of the RS 
algorithm shows a rather stable performance for a wide range of the random step size. 

However, the different strategies can be used in one session of training, by the following 
scenario: the learning can be started using multi mode to scan a very large space of weights, to 
find a better point and then to switch to the neuron mode and continue the search in space near 
to the already obtained point with small steps; finally the single mode can be used to tune the NN 
weights for the given problem solution with high verbosity, of course, if the problem is complex 
enough and the saturation of the quality function is not available yet (the " global" minimum is 
not found). The use of the CV procedure for the overtraining effects controlling  is assumed by 
default here. 

 

            

Figure 22. Quality function versus number of 
iterations in different CV stages for three 
modes of RS algorithm (medium steps). 
 

Figure 23. Quality function versus number of 
iterations in different CV stages for three modes 
of RS algorithm (medium steps). 
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4.9  INVESTIGATION OF INTERPOLATION POSSIBILITIES BY NEURAL 
NETWORKS 

In the regression tasks good interpolation of the training sample events (small training error) 
is necessary condition to be sure in accurate estimation of regressand in control (experimental) 
sample. As will be shown bellow, if the inherent Bayes error is small and training examples are 
sufficient, this is practically always reachable by neural networks. In problem of the primary 
energy estimation of CR particles we meet this requirements. What we need is, having finite 
simulation samples to teach the NN to generalize the functional dependence of the following 
form: 

𝐸{ = 𝑓R𝑁i, 𝑁S/�, . . . T             (4.29) 

in a wide range of 𝐸{ - energy of PCR particles (regressand).𝑁i,𝑁S/�, . .., are the EAS 
characteristics (inputs of the NN). The form of f is unknown and will be accumulated in  NN 
weights during training process using simulation trials (training samples, where for each input 
vector the corresponding true value of the regressand is known). 

 

 

Figure 24. Quality function versus number 
of iterations in different CV stages for three 
modes of RS algorithm (large steps) 
 

Figure 25. Quality function versus number 
of iterations in different CV stages for three 
modes of RS algorithm (large steps) 
 

Figure 26. The distribution of primary energy 
in simulated sample. 
 

Figure 27. The history of NN training for the 
estimation task. 
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The problem of sufficient training examples arises from the difficulties to simulate large 
number of events in the whole energy interval of investigation. Usually we are able to handle 
much more low energy events than more interesting high energy events, since the simulation of 
high energy events is very hard and time consuming process as compared with lower energy 
events simulation. 

The main problem of unbiased and accurate estimation of primary energy in a wide energy 
range is associated with the deficiency of simulation trials. The Figure 26 shows a common 
shape of the energy distribution in simulations. In order to overcome the problem of low 
statistics in high energy interval usually one takes the narrow energy bins and simulates events 
distributed uniformly (or by some low) in each bin. 

The NN with 2x8x6x1 configuration was trained to estimate the primary energy using more 
than 60000 events shown in Figure 26. Relatively large NN was used since the TS size is large 
enough. The neuron mode of RS algorithm was used for the training, 50000 iterations were 
performed. The Figure 27 shows the learning history of the NN. It is easy to see the saturation of 
objective function (RMSE) after 10000 iterations. On the inset of this figure the same 
dependence is depicted in more details above 1000 iterations, indeed, the change of objective 
function is negligible for a long training time. From Figure 28 and Figure 23 one can see the 
estimation results. In spite of small overestimation for lowest energies, where a few number of 
events are available, the well agreement is observed between true and estimated values of energy 
in the low and middle energy region. The agreement is much more worse in the region of grater 
energies, although the spread is smaller, but there is a strong bias of estimation for the most 
interesting highest energies. This result can be explained by the deficiency of training events in 
high energy region. Indeed, the main contribution to the quality function (eq.(4.8)) minimizing 
in training process comes from a large number of low energy events, and the overall decrease of 
quality function exists while the discrepancy of apparent and true values of small number of high 
energy events remains relatively large. 

The primary energy spectrum of CR can be described by power low in energy: 

�T
�8
= 𝐼{ ⋅ 𝐸zk                      (4.30) 

where dI/DE is the differential flux in particles, Io is the absolute flux normalization and γ is the 
spectral index. So, in the simplest case when in simulated sample the energy is distributed 
according to this low, its very easy to give weights to each event according to the inverse low: 

𝑊5 =
83
Ú

TU
,     i=1,Nevents                                 (4.31) 

But, as was mentioned above, the simulations are usually performed bin by bin in whole 
energy interval to accumulate more high energy events (Figure 26). In this case the weights were 
defined as follows: 

𝑊5c =
G

ÁV63
                      (4.32) 

where 𝑁𝑏is the number of bins in which the distribution of energy is approximately uniform, 
𝑀𝑖; 𝑖 = 1,𝑁𝑏is the number of events in i-th bin, 𝑗 = 1,𝑀5. Figure 29 and Figure 25 display the 
estimation results using TS with weighted events. It is worth to mention that 10000 training 
iterations were performed to obtain this result. It is easy to see the well agreement of true and 
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estimated values in whole interval of energy distribution support. The overall bias of estimation 
does not exceed 5%. So, the introduction of individual event weights enhances the estimation 
power significantly and makes the NN training faster. 

 
Figure 28. The NN regression using events with individual weights, estimated energy versus true 
energy.  
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CHAPTER 5. 
INVESTIGATION OF EAS CHARACTERISTICS 

5.1  THE KASCADE EXPERIMENT 
The KASCADE (Klages et al., 1998) experiment consists of three main parts - the 

scintillator array, the central detector and the muon tunnel, and is able to measure large number 
of EAS characteristics for each individual event. 

A scintillator array measures the electrons, photons and muons outside the core region of 
extensive air showers in 252 detector stations on a rectangular grid of 13 m spacing, hence 
forming an array of 200 × 200m2 . 

The key component of the central detector is a finely segmented hadron calorimeter. A                         
20 ×16m2 iron stack arranged in 9 horizontal planes measures the hadrons and their energy. 
Below 30 radiation length of absorber the central calorimeter contains a layer of 456 scintillation 
detectors acting as trigger for the calorimeter and measuring the arrival time of hadrons. 
Underneath the calorimeter two layers of multiwire proportional chambers measure muon tracks 
above an energy of 2 GeV with about 1.0 deg angular accuracy. 

North of the central detector in a 50 m long tunnel muons above an threshold energy of 0.8  
GeV are measured with the help of streamer tubes. On an area of coverage of 150m2 they track 
muons with 0.5 deg accuracy. The schematic view of the KASCADE experiment is shown in 
Figure 29. 
 
5.2  THE SIMULATION PROCEDURE 

All statistical decisions and procedures are correct within the prechosen model. Thus a 
realistic simulation is the key problem of any physical inference in indirect experiments. 
Extensive air shower investigations are a classical example of such a situation. An adequate 
consideration of detector response and an identical reconstruction of experimental and simulated 
data are necessary steps of data analysis. 

 
Figure 29. Lay-out of the KASCADE experiment 
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The simulation data base of the KASCADE experiment is fulfilling the above requirements, 
and we use specific EAS parameters, like the numbers of electrons/photons (Ne ) and truncated 

number of muons (Nµ tr) and the age (S89 ) parameter as input for data analysis (Glasstetter, 
1997), (Weber, 1997). 

The physical meaning of these variables will not be discussed, we only mention that  the 
procedures of their use are identical for experimental data and simulations. It is also very 
important to say that hypotheses about lateral distributions of muons and electrons at very small 
and large distances are not of influence. 

The simulations of the EAS development in the atmosphere were done with the CORSIKA 
code (Heck et al., 1998) (VENUS (Werner, 1993) and QGSJest (Kalmykov.et al., 1997) 
models). 

To estimate the bias due to finite sampling and reconstruction errors the detailed detector 
simulation on the basis of the GEANT (CERN, 1993) package was made taking into account all 
shower particles, absorbers and active materials, energy deposits, trigger conditions and 
efficiencies, as well as the electronics, digitization of pulse heights, times, etc. 

In the second step the EAS parameters reconstruction programs were applied. The EAS core 
position, arrival direction, electron, muon densities, electron and muon numbers from the array, 
hadron information, arrival time distributions in central detector, and many other characteristics 
are calculated. 

The parameters of simulated showers were reconstructed with the same programs as 
experimental ones. The measured EAS parameters by KASCADE are shown in the Table 7. 

Table 7. EAS features detected by KASCADE experiment 

Ne Number of electrons in EAS 

Nµ tr Truncated number of muons (number of muons in the range of 40 to 200m) 

S89 Shower age associated with a Molier radius 89m 

Nµ CD Number of muons in Central Detector (CD) 

Nh Number of hadrons 

Eh max The energy of most energetic hadrons 

Eh sum Total energy of hadrons 
 

As one can see from the Figure 30 the overlapping of shower parameters corresponding ever 
to more distinct classes (proton and iron initiating primaries) is rather big and one can't expect 
reliable classification of primaries according to the single EAS features. 

In the multidimensional features space, as one can see from the Figure 31 the differences 
between proton and iron samples could be detected. Therefore, the detailed examination of all 
EAS characteristics and their correlations will allow to find a subset of features to be used for 
experimental data classification. 
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Figure 30. Features distribution for proton and iron 
 
5.3  VALIDATION OF MODELS 

5.3.1  COMPARISON OF THE SINGLE EAS VARIABLES 

First of all we've to examine the variables to select primary mass discriminants and variables 
correlated with the primary energy. We use for this purposes simulated events, for which the 
"true" values of mass and energy are known. For all measurable EAS variables we calculate the 
P-values of following statistical tests: 

• Student's t-test 

𝑡 = S+zS,

Æê+,Åê,,
                           (5.1) 

where the µ1, σ1 and µ2, σ2 are the mean values and the standard deviations of the first and second 
class respectively. 

• Kolmogorov-Smirnov .D-test 

𝐷 = sup𝑟𝑒𝑚𝑢𝑚(|𝐹G(𝑣) − 𝐹�(𝑣)|;                     (5.2) 

were 𝐹1(𝑣)  and 𝐹2(𝑣) are the cumulative probability function for first and second class (model) 
respectively. 

• Mann-Whitney U-test 

𝑈 = �+
6+
− �,

6,
;                  (5.3) 

were the T1 and M1, M2 and T2    are the sum of ranks of events from first and second samples 
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respectively, are the number of events in samples. The rank is the number of particular event in 
ordered sequence of events (variation row). 

From the Table 8 one can see that results of applying of three mentioned statistical tests are 
consistent with each other and the best primary discriminators are Nµ

tr,age, Ne, Nµ
*. The 

results are model-independent, the same variables are chosen both by QGS and VENUS modes 
of CORSIKA simulations. 

5.3.2  CORRELATION ANALYSIS 

The correlation information is used for the choice of variables for energy estimation. From 
the Table 9 and Table 10 it is seen that again information on EAS muons and electrons is the  
most valuable for the estimation of the primary energy. Muon information is slightly better 
(correlation approaching 1) than electron information. The results are again model- independent. 

The correlation analysis are used also to select the best pairs of variables for distinguishing 
between classes. The pairs correlated different within the same model, but for different primaries 
are selected. 

 
Figure 31. Proton and iron events distribution in 3 dimensional space of features 

Table 8. P-values of statistical tests for proton and iron for different models: t Student,                                    
Νµ* D - Kolmogorov- Smirnov, U - Mann-Whitney 
QGS            t          D            U VENUS  t          D            U  
Ne    3.177    2.747      4.996 Ne  2.869    3.161      5.778  

Nµ
tr 12.601     6.026    12.723 Nµ

tr 10.274    4.282      9.403  

S89 17.160    7.489    17.294 S89 20.415    8.314    19.473  

Nµ
CD   7.207    3.452      7.132 Nµ

CD 5.650    2.031      3.872  
Nh    0.673    1.647      2.811 Nh  2.265    3.335      5.848  

Ehmax   5.564    3.066      6.144 Ehmax 3.612    2.402      4.458  

Ehsum   2.478    3.126      3.985 Ehsum 3.457    3.140      6.174  

It have to be mentioned, that for constructing both primary and energy estimators, better to 
use nonoverlapping complexes of features. It is not easy to do, because, muon and electron 
information is the best signature as well for primary mass, as for primary energy. 
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Table 9. Correlation matrix for QGS data 
 

 Mass  E0  Ne  Nµ
tr S89  Nµ

CD Nh  Ehmax Ehsum 
Mass  1.00  0.21  -0.03  0.27  0.32  0.15  -0.03  -0.11  -0.07  
E0  0.21  1.00  0.92  0.95  -0.25  0.94  0.78  0.53  0.73  
Ne  -0.03  0.92  1.00  0.90  -0.43  0.93  0.85  0.62  0.81  
Nµ

tr 0.27  0.95  0.90  1.00  -0.23  0.93  0.78  0.52  0.72  
S89 0.32  -0.25  -0.43  -0.23  1.00  -0.33  -0.39  -0.33  -0.38  
Nµ

CD 0.15  0.94  0.93  0.93  -0.33  1.00  0.86  0.60  0.82  
Nh  -0.03  0.78  0.85  0.78  -0.39  0.86  1.00  0.70  0.95  
Ehmax -0.11  0.53  0.62  0.52  -0.33  0.60  0.70  1.00  0.73  
Ehsum -0.07  0.73  0.81  0.72  -0.38  0.82  0.95  0.73  1.00  

 
5.3.3  PROBABILITY DISTANCES 

Another important measure of the separability of two samples is the Bhattacharya distance, 
which takes the form: 

𝐵ℎ𝑎𝑡𝑎 = G
Y
(𝜇� − 𝜇G)� -

Z+ÅZ,
�
.
zG
(𝜇� − 𝜇G) +

G
�
ln

[\+]\,, [

Ä|Z+||Z,|
             

      (5.4) 

where the µi and Σi are the expected vector and covariance matrix of i-th class. The first term of 
this equation is the Mahalanobis distance and the last term is the so called correlation distance. 

𝑅6ÜmÜ÷ = (𝜇� − 𝜇G)� -
Z+ÅZ,
�
.
zG
(𝜇� − 𝜇G)            (5.5) 

 

𝑅ØÇ�� = ln
|\+]\,, |

Ä|Z+||Z,|
                                   (5.6) 

The selection of the best subsets of EAS features according the Bhattacharya distance is 
presented in Table 11. The best method of feature subset selection is connected with Bayes risk 
(1.22) and Error function (4.8) estimation. 
 
Table 10. Correlation matrix for Venus data 

 Mass E0 Ne Nµ
tr S30  Nµ

* Nh Ehmax Ehsum 

Mass  1.00  0.18  -0.06  0.18  0.33  0.09  -0.05  -0.09  -0.07  
E0  0.18  1.00  0.91  0.95  -0.24  0.94  0.80  0.52  0.76  
Ne  -0.06  0.91  1.00  0.90  -0.40  0.93  0.89  0.60  0.85  
Nµ

tr 0.18  0.95  0.90  1.00  -0.24  0.92  0.81  0.51  0.76  
S89 0.33  -0.24  -0.40  -0.24  1.00  -0.32  -0.41  -0.28  -0.40  
 Nµ

CD 0.09  0.94  0.93  0.92  -0.32  1.00  0.86  0.57  0.83  
Nh  -0.05  0.80  0.89  0.81  -0.41  0.86  1.00  0.65  0.95  
Ehmax -0.09  0.52  0.60  0.51  -0.28  0.57  0.65  1.00  0.68  
Ehsum -0.07  0.76  0.85  0.76  -0.40  0.83  0.95  0.68  1.00  
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µ 

5.3.4  QGS AND VENUS COMPARISON 

To compare different strong interaction models, one should have the same mass composition 
and energy distribution in experimental and simulated data, to avoid mass depended differences. 

The mass composition of primary cosmic radiation in low energy region (below 1015 eV) is 
measured by direct methods and the following proportion of different nucleus is assumed to be 
true (Watson, 1997): H - 24%; He - 31%; 0 - 21%; Si - 12%; Fe - 12%. 

To avoid energy spectrum based differences we choose rather narrow energy interval. The 
truncated muon interval (in logarithmic scale) 7.82 ≤ 𝑁S/� ≤ 9.21 is corresponding to the 6 ∗
10G` ≤ 𝐸{ ≤ 2 ∗ 10G|𝑒𝑉. 
Thus, we construct simulation samples from VENUS and QGS models with this proportion of 
primaries and in the mentioned energy range. The selection was made by in Nµtr  both, Monte 
Carlo and experimental data. 

5.4  CLASSIFICATION OF EXPERIMENTAL SAMPLE 

Table 12.  Comparison of exp. data with VENUS and QGS models 
L RBhata Re 

QGS 1.2036 ±0.01 0.023 ±0.001 0.456 ±0.01 

VENUS 1.1818 ±0.01 0.014 ±0.001 0.469 ±0.02 

Both models are very close to experimental data (see Table 12, Table 13), but all tests give a 
bit preference to the QGS model. 
 
Table 13.  One dimensional tests for models and experiment 
 

QGS  t           D          U    VENUS  t           D          U  

Ne 

Nµ
tr   

0.916    2.312    0.901  
3.199    1.450    2.653  

  Ne  
Nµ

tr   
3.369    3.004    4.368 4.609    
2.632    4.787  

QGS - 0.55 ±0.02 

VEN - 0.45 ± 0.02 

5.5  THE HOMOGENEITY OF THE KASCADE DATA 
2371 events of central calorimeter and array data and 450000 events of array data only were 

available for analysis. The events were selected within 15 — 20° zenith angle range (the 
simulations were done for these angles). 

Table 11. The best feature subsets according to the Bhattacharya distance 
 2 best  next best  worst  

QGS  Ne       Nµtr   NµCD     S89        sumEh  Nh      Ehmax 

VENUS  Ne       Nµtr   S89        NµCD     sumEh  Nh      Ehmax  
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To check homogeneity of data we divide experimenta l data to 3 parts and make multiple 
comparisons with techniques described above. Also the negative Log likelihood function value L  
(1.17) and estimate of Bayesian error R e

  (1.25) were calculated. 

Table 14. Exp. data homogeneity test, features used: Nµ
CD, Eh

sum 
 

 £  R Mahal..  RBhata.  Rcorr.  Re  
1 class  2.911  0.011  0.007  0.024  0.479  
2 class  2.803  0.029  0.021  0.069  0.466  

 
The homogeneity check for array and calorimeter data one can find in the Table 14, Table 

15, Table 16, Table 17. All tests demonstrate rather good agreement with each other and prove 
the homogeneity of experimental data samples. 

Table 15. Exp. data homogeneity test, features used: Ne, Nµtr,NµCD,Ehsum 

Table 16. Exp. data homogeneity test, features used:  Ne, Nµ
tr 

 £  RMahal.  RBhata.  Rcorr. Re  
I class  1.428  0.002  0.000  0.000  0.490  
2 class  1.425  0.001  0.000  0.000  0.494  

 
Table 17. One dimensional tests of exp. data: t - Student, D - Kolmogorov-Smirnov, U - Mann-Whitnay 
 t  D  U  

𝑁𝑒 1.816  1.114  1.433 
 
  

Nµtr 0.080  0.823  0.570  
NµCD 1.595  1.118   1.776  

  Ehsum 1.418 0.407 1.358 
 
5.6  THE KASCADE CLASSIFICATION MATRICES 

The examination of classification matrix and its index (1.26) gives clues for understanding 
the discriminative power of different EAS measurables for composition estimation. 

The value greater than of 0.6 are still allow for solving the system of equation (1.28). For the 
lower values the solutions didn't converge and fraction couldn't be reconstructed. Therefore we 
have to find appropriate variables, or reduce the number of classes. Only balance between 
expected classification errors and number of classes used, will allow to obtain reasonable and 
reliable estimates of the fraction. 

As one can see from the Table 18 and Table 19, present status of a priori knowledge accu- 
mulated in M.C. models and represented in training samples, didn't support the attempts to make 
5-way classification even for all available features. 

The situation with 3-way classification is much better, as we need much less a priori 
information, comparing with classification into 5 nuclei groups. As we can see from Table 20 
and Table 21, even array information only allows to resolve the distribution mixture (1.4). 

The calorimeter information significantly increase the expected fraction reconstruction 
accuracy. 

 £  RMahal.  RBhata.  Rcorr. Re  

I class  4.434  0.129  0.038  0.086  0.429  

2 class  4.289  0.056  0.041  0.135  0.453  
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Table 18. Array data, features used  Nе Nµtr 

0.5148 0.2620 0.1024 0.0565 0.0643 

0.3240 0.2979 0.1846 0.0885 0.1050 

0.1185 0.1803 0.2340 0.1721 0.2951 

0.0707 0.1064 0.1942 0.1958 0.4330 

0.0445 0.0659 0.1362 0.1362 0.6527 

Table 19. KASCADE data, features used N , Nµtr, NµCD, Ehsum 

0.4785 0.3085 0.1323 0.0438 0.0368 

0.2678 0.3863 0.1943 0.0766 0.0750 

0.0558 0.1932 0.2903 0.2200 0.2407 
0.0367 0.1247 0.2311 0.2506 0.3570 
0.0368 0.0706 0.1544 0.1471 0.5912 

Table 20. 3-way classification by Nе Nµtr 

0.6831 0.2595 0.0574 

0.2132 0.4849 0.3019 

0.0919 0.3078 0.6003 

Table 21 3-way classification by N , Nµtr, NµCD, Ehsum 

0.7108 0.2419 0.0473 

0.1777 0.5176 0.3048 

0.0779 0.2559 0.6662 
 

The 2-way classification in "heavy" and "light nuclei can be done with greater accuracy. See 
Table 22 and Table 23 

Table 22.  2-way classification by Ne, Nµtr 

| 0.863    0.137 | 
| 0.088    0.912 | 
Table 23. 2-way classification by N , Nµtr, NµCD, Ehsum 

| 0.865    0.135 | 

| 0.076    0.924 | 

The information concern 5, 3 and 2 -way classifications for KASCADE different parts is 
summarized in Table 24, where the separability indexes are presented. 

Table 24 Separability index for KASCADE 
 Index- Index-3 Index-2 
CD 0.154 0.462 0.708 
ARRAY 0.341 0.584 0.887 
ARRAY+CD 0.38 0.626 0.894 
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5.6.1  COLORED NUCLEAR MAPS 

 
Figure 32. 3-way map, array information. Green points represent oxygen MC data. 

It is of greatest importance to divide initial feature space according to different primaries. 
Each decision rule maps vi events to one of 3 nuclei groups. Visa-versa, each nuclei group is 

mapped by decision rule (1.12) to the definite region of feature space V . 
By examining of such "nuclear maps" we can make insight to the possibility of defining the 

type of particular nuclei and about expected misclassification to the other nuclear groups. 
Overlaying the experimental data on the colored nonlinear "masks" we can visualize the 

Bayesian decision procedure. 
The different masks, for various variables, two energy regions and 2 strong interaction 

models were used for multiple comparisons and for visualization of the decision boundaries. 
On the Figure 3.4 3-way classification maps for array variables are presented. The oxygen 

simulations (green points) are superimposed on the "light" (red color), "heavy" (blue), and 
"intermediate (white) clusters. 

The colored maps directly correspond to the Re
 estimates and tables from the previous 

section. 
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CHAPTER 6. 
EAS DATA ANALYSIS 
6.1  ENERGY SPECTRA AND MASS COMPOSITION OF PRIMARY COSMIC RAY 
FLUX, MEASURED ON SHOWER-BY- SHOWER BASIS 

6.1.1  COSMIC RAY (CR) SOURCES AND ACCELERATION MECHANISMS 

There is widespread agreement that the bulk of high energy cosmic rays is accelerated by 
supernova shocks in the interstellar medium by a mechanism called 'diffusive shock acceleration' 
although direct observational evidence is still missing. There is also agreement, though, that this 
mechanism is not effective to the highest energies observed. The exact upper limit is not clear 
but is usually assumed to lie between 1 and 10 PeV. Therefore the determination of the exact 
spectral shape and of the primary chemical composition in this range are of prime importance. In 
addition, the all particle spectrum in this energy region shows a change of the slope of the overall 
power law which appears to describe the spectrum satisfactorily. This 'knee' of the spectrum 
which was first observed more than 40 years ago (Kulikov et al., 1959) is the only remarkable 
structure over a range of many decades. 

Measurements of the energy spectra of the individual species of the cosmic ray flux could 
provide clues to the origin of this knee such as a rigidity cut off, inherent to Fermi acceleration, 
or peaks, revealing the influence of individual nearby supernovae. 

Above a primary energy of a few hundred TeV the direct measurement of energy and mass 
of individual cosmic ray nuclei is unfeasible due to the drastic decrease of intensity with 
increasing energy. One has therefore to resort to the measurement of extensive air showers 
(EASs) which are produced when high energy cosmic ray particles enter into the atmosphere of 
the earth. To determine primary energy and mass from EAS observables has been tried since 
many years but has proved to be a very tough problem. 

The idea to use advanced statistical techniques of multivariate analyses (Chilingarian, 1989) 
for isolating certain classes of EAS stems from an early proposal of A. Chilingarian and H. 
Zazyan (Chilingarian et al., 1991), (Chilingarian 1991A) to prepare quasi-mononuclear beams by 
mass discriminative analyses of event-by-event EAS observations, planned for the ANI 
experiment (ANI Collaboration, 1992), (Chilingarian, 1998). The realization of this proposal has 
become realistic by the recent results of the multi-detector experiment KASCADE (Kampert, et 
al., 1999) which provide an accurate experimental basis of event-by-event data  of many EAS 
observables. 

This approach appears to be very promising with the aspect of refined tests of current 
interaction models and to pave the way to a consistent description of the hadronic interaction at 
extremely high energies by experimental road signs. Still the results of the KASCADE 
experiment concerning the energy spectrum and mass composition of primary cosmic rays are 
considerably affected by a model error, estimated for the energy slope to be 10 times larger than 
the statistical uncertainty (Chilingarian et al., 1999A). 

The present report introduces in recent results on energy dependence of mass composition 
and energy spectra of different species of the primary flux. Also first attempt is made to analyze 

"mononuclear beams" interactions with atmosphere using KASCADE Central Detector (CD) 
information. 

It is necessary to mention that results obtained within event-by-event analysis approach are 
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conditional on the particular strong interaction model used for simulation of the primary passage 
through the atmosphere. The deconvolution of the triple uncertainty (primary mass, primary 
energy and strong interaction model) and obtaining of "pure" mononuclear beams even within 
one prechosen model will provide hints to understand direction in which family of strong 
interaction models have to evolve to meet experimental consistence criteria. 
 
6.1.2  PRIMARY ENERGY ESTIMATION 

The multi-layered perceptron (MLP) algorithm is used to determine the mass composition 
and the energy spectrum of the primary cosmic rays (PCR) in the knee region. This method 
allows the possibility of primary energy estimation as well as primary mass classification into 
multiple categories. The basics of Bayesian and neural regression and classification techniques 
are described in chapters 1, 2 and in (Chilingarian, 1994), (Chilingarian,   1995),    (Chilingarian 
et al., 1997), (Chilingarian et al., 1997A). 

For the estimation and classification tasks the same EAS observables are used. These are 
observables of the electromagnetic and muonic components measured by the KASCADE field 
array detector installation: 

• Ne  number of electrons in EAS, 

• the shower age parameter s both associated with a Moliere radius of 89m 

• Nµ tr  truncated number of muons (𝑁S/� = 2𝜋 ∫ 𝜌S(𝑟)𝑟𝑑𝑟
�{{Þ
`{Þ ) 

Restricting these observables, is justified by following reasons: 

• It is assumed that the electromagnetic and muonic components of EAS are described by 
the MC models with sufficient accuracy (a partially insufficient knowledge about the 
hadronic component is illustrated in (Antoni et al., 1999), (Roth, 1999). 

• Due to the larger statistical accuracy the uncertainties caused by strong EAS fluctuations 
are eliminated as compared with hadronic information of EAS. 

• The KASCADE CD information can be used independently, after obtaining 
"mononuclear beams". 

The energy estimation is performed using two sets of observables: Ne  and 𝑁S/� and Ne, and 
s. As one can see in the Figure 33, adding the observable s the accuracy of the energy estimation 
is enhanced. Indeed, the correlations of the Ne and 𝑁S/� with primary energy are very strong 
(Chilingarian et al., 1999B), and further the s parameter is correlated with primary mass (see 
Table 25), therefore the usage of all 3 parameters, "fixing" in some sense the primary type, 
enlarges the overall accuracy of the energy estimation for all 3 groups of nuclei. Another 
important characteristic is the bias of estimator. Only small biases allow to reconstruct energy 
spectra and estimate slopes and "knee position" adequately. In Figure 33 and Figure 34 the 
relative error of the energy estimation is shown. For both sets of observables an almost unbiased 
estimation in the whole energy interval (except at the most lowest and highest energies) is 
apparent. Therefore we use a wider energy interval for simulated events to avoid over- and 
underestimation of primary energies at the boundaries. 
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Figure 33. The accuracy of the energy estimation.    Figure 34. The accuracy of the energy estimation. 
Used observables: Ne , Nµ tr and s.                                 Used observables: Ne  and Nµ tr 

 
6.1.3 PRIMARY MASS DETERMINATION 

After performing energy estimation, each EAS event is classified as induced by light (H,He), 
intermediate (CNO) or heavy (Si-Fe) nuclei (bellow we will refer these groups as "proton", 
"oxygen", and "iron"). The parameters of experimental events, classified as initiated from proton 
and iron nucleolus, are afterwards compared with those of simulated ones. The results are given 
in Figure 35 and Figure 36. A rather good agreement for simulated and experimental proton and 
iron induced events is obvious. In contrast, as one can see in Figure 37, the mean shower age of 
experimental data is shifted compared with the simulated data in whole energy interval, but still a 
clear difference between proton and iron events exist. 

Although simulations do not describe correctly the observable s, nevertheless the s parameter 
is a good signature of the primary mass. However the systematic bias of the s parameter can be 
misleading. For example, a neural net (NN) trained by N , N tr and s can result in a heavier mass 
composition, when applying it for experimental data classification. As seen from Figure 37, 
smaller s corresponds to lighter nucleus in both simulated and experimental data, but the absolute 
values differ significantly and thus, in mean, a proton initiated events with high probability could 
be classified as belonging to the iron type. 

From Table 25 where the correlations between primary energy and measured EAS 
parameters are presented, one can see the negative correlation of s and primary energy. It means, 
that applying trained neural network for energy estimation, systematically larger values of s 
entered network comparing with ones used during the training. Therefore, the incorporation of 
the s parameter will lead to the systematic underestimation of higher energies and 
correspondingly to a bias of the reconstructed energy spectrum. For that reason, we use for 
energy estimation only Ne and Nµ   EAS characteristics that adequate describe the experimental 
distributions. 
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Table 25. Correlations between primary mass and energy with EAS observables 
 A0  E0  Ne  Nµ

tr s  

A0 -  0.00  -0.19  0.07  0.31  
E0  0.00  -  0.95  0.98  -0.47  
Ne  -0.19  0.95  -  0.94  -0.58  
Nµ

tr 0.07  0.98  0.94  -  -0.47  
S  0.31  -0.47  -0.58  -0.47  -  
 
 
6.2   NEURAL ESTIMATION OF MASS AND ENERGY 

Demonstrated in previous sections unbiasness of the energy estimation, and rather high 
percent of the correct decisions in 3-way classifications (see Table 26 and Table 27) allow to use 
KASCADE array data for physical analysis such as the determination of energy dependence of 
the mass composition and energy spectra of three species of the primary CR flux in the energy 
range 1015 — 2 • 1016eV (limitation to this very narrow interval is due to simulations available). 
Figure 38, Figure 39 display the relative abundance of three group of nuclei for different 
energies and the differential energy spectra respectively using Ne, 𝑁S/�  and s parameters. Figure 
38 shows the energy dependence of the mass composition of the PCR flux for using all three 
observables: the relative abundance of light nuclei group is decreasing when approaching the 

Figure 35.  Nе versus E0 for simulated and 
experimental proton and iron events (the 
primary energy is estimated by neural 
regression method)/ used observables:                      
Nе  and Nµ 

tr   

 

Figure 36.  Nµ
tr versus E0 for simulated and           

experimental proton and iron events (the prima-
ry energy is estimated by neural regression 
method). Used observables:  Ne and Nµ

tr.  

 

Figure 37. Shower age s versus E0 for simu-
lated and experimental events (the primary 
energy is estimated by neural regression 
method). Used observables: Ne and Nµ

tr. 



88  

knee, while the behavior of intermediate and heave groups of nuclei is opposite. Figure 39 
demonstrates the knee feature in the all-particle and light nuclei spectra, whereas to make a 
conclusion on the energy spectrum of the intermediate and heavy nuclei is difficult due to the 
relatively large proportion of misclassified events in these groups (see Table 26). 

Table 26. Purity  of classified  events. Used observables: Ne and Nµ
tr  and s 

 

Pi→ j 

P 
j=p [%] 
77 

j=O [%] 
22 

j=Fe [%] 
1 

O 18 63 19 
Fe 3 28 69 

 

Table 27. Purity of classified events.Used observables: Ne and Nµ
tr   

 

Pi→ j 

P 
j=p [%] 
80 

j=O [%] 
18 

j=Fe [%] 
2 

O 19 58 23 
Fe 2 23 75 

 

Figure 40 and Figure 41 present the relative abundances and the energy spectra of three 
group 
of nuclei obtained by using Ne and   parameters. It is easy to indicate the essential differences 
between these graphs and analogical Figure 38 and Figure 39, which  were obtained using the s 
parameter additionally to Ne and 𝑁S/� parameters. Although the same dependence of the relative 
abundances on the primary energy is observed, the relative proportion of heavy and intermediate 
nuclei is changed. 

        
 

In both cases the knee feature is clearly seen for the all-particle and light nuclei spectra, and 
the light nuclei spectra break is more sharp than for all-particle spectra. For the spectrum of 
intermediate nuclei group the difference of the slopes is negligible and there is no evidence 
allowing to stand the existence of a change in spectral indices. 

An inverse knee observed in the spectrum of the heavy group of nuclei (most probably 
caused by not corrected spectra), is seen using both sets of observables, but the spectral indices 

Figure 38. Relative abundance of different 
groups of nuclei as a function of energy.  
Used observables:  Ne,  Nµ

tr and s .  

 

Figure 39. Differential energy spectra of 
three nuclear groups and all particle spect-
rum. Used observables:  Ne,  Nµ

tr and s .  
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of these energy spectra and the knee positions differ. The main difference, which is impossible to 
neglect, is that removing the s parameter one obtains smaller absolute values of spectral indices 
below the knee. Additionally the knee positions are shifted to the lower energies for all-particle 
and light nuclei energy spectra, too. Fits of the energy spectra in both cases were done by the 
method described in (Sokhoyan, 1998). 

 

   
Careful calculations of the misclassification rates and estimation of it's dependence on the 

primary energy will allow to make corrections to the energy spectra and to the relative 
abundances of different primary nuclei. Also the method and the model errors have to be taken 
into account in addition to the statistical errors, which are presented in Figure 39 and Figure 41. 

 
Figure 42. The cumulative abundances of different groups of nuclei 

The results of the current investigation illustrate the possibility of obtaining the energy 
spectra of different species of PCR and to estimate the mass composition of PCR in the "knee" 
region using the advanced methodology of nonparametric statistical analysis (MCSI) of 
experimental data on event-by-event basis. 

Figure 42 presents a comparison of the cumulative abundances of different groups of nuclei 
with recent results from CASA-BLANCA experiment (Fowler et al., 2000) using another 
experimental technique (measuring the lateral distribution of Cherenkov light in addition to the 
charged component of EAS) and completely different method of experimental data analysis. 
Similar trends and overall agreement in abundances of different nuclear groups are apparent. 

Figure 40. Relative abundance of different 
groups of nuclei as a function of energy.  
Used observables:  Ne and Nµ

tr.  

 

Figure 38. Differential energy spectra of 
three nuclear groups and all particle 
spectrum. Used observables:  Ne and Nµ

tr.  
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6.3  THE "PURIFICATION" PROCEDURE 

After estimating the misclassification rates, the possibility to select maximal pure* nuclear 
beams was investigated. The developed neural network technique allows a decrease in the 
contamination of misclassified events for each class of nuclei. Of course, efficiency** of 
classification is reduced at the same time. The purification was done in the following way: the 
NN performs a nonlinear mapping of EAS multidimensional characteristics to the real number 
interval [0, 1]. Particular class assignments for three way classification are subintervals [0. - 
0.33], [0.33 - 0.66] and [0.66 -1] for first, second and third class respectively. The 
misclassification matrix for these decision intervals are given in Table 26 and Table 27. 

If the NN is trained well enough to have generalization capabilities, NN output distributions 
for different classes are overlapping at subinterval boundaries. Therefore by the shrinking of the 
subintervals one can remove a large proportion of misclassified events, of course, 
simultaneously loosing some part of true classified events. From Figure 43, where the purity 
versus efficiency is plotted, one can see that the purity of proton and iron nuclei is larger than 
90%, when the efficiency is still greater than 50%. 

  

 

  
 

 

* purity: fraction of true classified events in actual number of events assigned to a given class 
** efficiency: fraction of true classified events in total number of events of a given class 

Figure 43 Event selection efficiency us purity for proton 
and iron events (obtained by classification of the control 
samples). Used observables:  Ne and Nµ

tr.  

Figure 44. Feature distributions for 
classified and purified proton and iron 
samples 

Figure 45. Feature distributions for clas-
sified and purified proton and iron samples 
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µ 

Purity estimates were obtained classifying 4000 control events (not used for the training) per 
class. For a given purity value the efficiency of proton events classification is always larger than 
the efficiency of iron events classification, thus, the purification of proton events turns out to be 
easier, than the purification of iron events. After preparing the "mononuclear" CR beams for 
investigation of the different nuclei interaction with the target (atmosphere) we  have to check 
for possible biases introduced by the purification procedure. First of all we have to investigate 
how the shrinking of the decision interval for different classes (on the NN output) reflects on the 
one and two-dimensional distributions of EAS parameters (NN input). For this purpose we 
investigate and compare the "purified" and "rejected" EAS characteristics distributions as well. 

On the Figure 44 and Figure 45 the distributions of EAS parameters of proton and iron 
classes are posted. In the above two pictures the "purified" distributions are compared with initial 
ones. The bottom pictures display distributions of the rejected (removed) events. The estimated 
purity of both proton and irons events is more than 90%. Initial purity of the proton events, as 
one can see from Figure 43 was 80%, and iron events -70% (most left points for both classes). It 
is easy to see that the events are removed over approximately the whole range of the features 
distribution support***. The shape and mean values of the distributions only slightly are changed 
after purification (see Table 28). 
Table 28. The mean values of different parameters of purified and removed proton and iron samples 

 
 

𝜇𝑎𝑔𝑒
𝑓  𝜇Ái

'  𝜇Ái
¦  𝜇

𝑁𝜇𝑡𝑟
𝑝  𝜇

𝑁𝜇𝑡𝑟
𝑓  

ALL 1.066 1.231 4.821 4.295 3.489 3.543 
Pure 1.061 1.236 4.834 4.255 3.486 3.542 

Removed 1.134 1.218 4.671 4.396 3.529 3.547 

Generally, the one dimensional distributions are not affected strongly by the mild cuts of NN 
output distribution tails, because the NN performs the nonlinear mapping of multidimensional 
input vector to one-dimensional output, therefore the cut applied to the NN output isn't linearly 
transferred to input parameters. More detailed investigation of  Figure 44 allows to see that no 
events with smallest Ne are removed from iron sample as opposes to the proton events 
distribution. The opposite situation is observed for the Nµtr distribution, see Figure 45. This fact 
is more efficiently demonstrated on the Figure 46, which displays the Ne, Nµtr parameters two-
dimensional distribution for the proton and iron events. It is obvious that we remove both proton 
and iron events from the boundary region, where misclassification is highly probable. 

 
Figure 46. The two-dimensional distribution of the NN input  parameters 
 

 

*** Purification didn't reduced the number of selected "Proton" and "Iron" events significantly. Only 28004 
events are removed from initial 357689 classified as proton, and 29325 from 100643 classified as iron 

  

p
ageµ
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If the events would be removed uniformly over whole range of the features space, we 
would 
still have overlapping (in the region of Ne-, Nµtr  parameters space, where the probability of 
both classes is approximately equal), but the efficiency will be decreased. Figure 47 displays 
analogical distributions as in Figure 44 and Figure 45, but for the characteristic didn't used as 
NN input (EAS age parameter). As one can see the distribution is not affected by the 
shrinking the decision intervals on the NN output. Figure 48 demonstrates that events are 
removed over whole range of the distribution. 

To check for possible systematic distortions introduced in EAS parameters by the 
purification procedure also the one dimensional statistical tests (for detailed description on 
statistical tests used see (Chilingarian, 1998) are performed for initial and purified samples. 

The Table 29 displays the results of different tests for initial and purified proton and iron 
samples. The presented values are the probabilities of accepting the null hypothesis, that the 
samples are from one and the same population. If the tests give a small values of the 
probabilities one can reject the null hypothesis, e.g. there exists big difference between two 
examined samples. 

 

  
As one can see from Table 29 the test values are rather high and one can not reject the 

null hypothesis. So, the initial and purified proton and iron samples belong to the same 
population, which demonstrates that the purification did not introduced systematic 
distortions. 
Table 29. The probability values of different tests for initial and purified proton and iron samples                
(t- Student, D- Kolmogorov-Smirnov, U- Mann- Whitnay) 

Initial and purified protons  Initial and purified irons  

 t  D  U  t  D  U  

NµCD 

 
0.11 

 
0.36  

 
0.13  0.18  0.44  

 
0.12  

 Nh   0.36  0.99  0.49 0.35 0.99  0.28  
Eh  0.36  0.77  0.40  0.38  0.72  0.23  
Ehmax 

 

0.30 
 

0.81 0.29 0.40 0.84 0.26 

Etot 0.38  0.89 0.46  0.36  0.74 0.25 

Figure 47. The distribution of age (not used 
for NN input) parameter for purified 
samples  
 

Figure 48. s vs Ne  for removed proton and 
iron events 
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The analogical results are obtained from multidimensional comparisons. Particularly, the 
likelihood ratio, the log-likelihood function and Bayes risk values (for more information see 
(Chilingarian, 1998)), for two-way classification of purified proton subsample into initial and 
pure proton classes, are presented in Table 30. These results support our thesis on soundness 
of the purification procedure. 
Table 30. The classification results of pure proton subsample into initial and pure proton classes 
(features used Ne,  and Nµtr age) 
 Likelihood function  Classification score  
ALL Pure 0.17 0.14 0.44 0.56 
 Likelihood Ratio (ALL/Pure)  Bayes Risk  
 0.92  0.47  

All this procedures illustrate that no systematic uncertainties are introduced in to the 
features distributions while "purifying" the proton and iron samples, but there is still one 
parameter which may be affected by the cuts systematically. This parameter is the height of 
the first interaction (of the primary nucleus with atmosphere). Unfortunately this parameter 
can not be measured experimentally by surface array, therefore the distributions of this 
parameter for initial and purified proton and iron simples are presented for MC data (Figure 
49). From this figure one can also see that no systematic cuts are introduced also to this 
parameter. 

 
Figure 49. The first interaction height (Z) distribution for purified and removed proton and iron 
events 

6.3.1  EXPERIMENTS WITH PURE (MONONUCLEAR) CR 
In previous sections the possibility of making precise (~ 25% relative error) and 

unbiased estimation of primary energy, and accurate classification of primary particles into 3 
categories in the range of 1015 — 2 • 1016 eV was displayed. The characteristics of 
mononuclear CR beams obtained by the classification of the showers detected by KASCADE 
array along with the energy estimation accuracies were presented. High levels of purity of the 
proton and iron " beams" opens possibility of consideration high energy muons and hadrons 
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initiated by known primary with definite energy and detected by the KASCADE Central 
Detector (CD). 

It is worth to mention that achieved purity of proton and iron beams (~ 90%) exceeds the 
estimate obtained in (Chilingarian et al., 1991) (70 — 80%). The relative error of primary 
energy estimation by the KASCADE array (~ 25%) almost coincide with expected one. 

The comparisons of the QGSJET model (Kalmykov.et al., 1997) and KASCADE data 
are depicted in Figure 50, Figure 51, Figure 52, and Figure 53. The event selection procedure 
is equivalently done for the simulated and experimental data samples. 

Due to the large statistical accuracy, the experimental distributions of the hadronic 
parameters of the showers originating from the primary protons demonstrate a rather smooth 
variation increasing with the energy. On the other hand the corresponding distributions, 
originating from the primary iron nuclei do less agree. However, in general, the overall 
dependences are in agreement with QGSJet simulations (Kalmykov.et al., 1997). 

It is worth to note, that contamination of both proton and iron induced events by the 
intermediate nuclei has been ignored. The results in Figure 52-Figure 53 in contrast with 
(Antoni et al., 1999), present directly the energy dependence of EAS hadronic and high 
energy muonic content, those allowing physical inference and direct comparisons with 
alternative strong interaction models. In the present case the primary energy is determined 
event-by-event. 

 

       
 

 

      

Figure 50. The Energy dependence of the 
Hadron Energy for the Proton and Iron 
Primaries 
 

Figure 51. The Energy dependence of the 
Total Energy for the Proton and Iron 
Primaries 
 

Figure 52. The Energy dependence of the 
Number of Hadrons for the Proton and 
Iron Primaries 
Primaries 
 

Figure 53. The Energy dependence of the 
Number of Muons for the Proton and 
Iron Primaries 
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If we take into account the limited efficiency ( ≈ 90% ) of the muon detecting facility, the 
agreement of the experimental data with the predictions is rather remarkable. It is interesting 
also to point on the approximately primary invariant form of the muon number energy 
dependence, as demonstrated on Figure 53. 

The difference between figures presented in this paper and in (Vardanyan et al., 1999) is 
caused by use of different data samples and different selection criteria. In (Vardanyan et al., 
1999) we use rather mild cuts requiring at least 1 hadron and 5 muons in KASCADE CD, 
and the number of events survived cuts were broadly distributed around CD, thus 
introducing uncertainties and biases in reconstruction of the shower core location, primary 
energy, true number of hadrons and number of hadrons registered by the CD. 
 
6.4  CONCLUDING REMARKS 

Modern arrays of particle detectors covering a large area are measuring different 
parameters of numerous secondary products of the primary cosmic ray interactions with the 
atmosphere. Only a simultaneous measurement of a large number of independent parameters 
in each individual Extensive Air Shower can yield reliable information to reconstruct the 
Primary Cosmic Radiation particle mass and its energy as well as the characteristics of strong 
interaction with atmosphere nuclei. 

To make the conclusions about the investigated physical phenomenon reliable and 
significant, we develop a unified framework of statistical inference, based on nonparametric 
models, in which various nonparametric methods (Bayesian decisions, Neural Networks 
models, Feature extraction, etc.) are incorporated. Developed software are widely used for 
coherent solution of data analysis problems encountered in Astroparticle Physics 
experiments. 

The current investigations are a first approach to obtain energy spectra of 3 species of 
primary flux and to use "mononuclear beams" for addressing the CR interaction problem on 
the event-by- event basis. The strong interaction model in general explains adequately 
almost all EAS parameters. If, as we demonstrate, surface array parameters are described 
with sufficient accuracy, the hadron information demonstrates slightly more discrepancy with 
model predictions, which could be caused by very poor statistics of CD events. The question 
of the significant disagreement  of  experimental  and  simulated  events  by  the  shower  age     
parameter                remains still open. Of course, better statistics for simulation and 
experimental data are required, other strong interaction models have to be tested as well. 
Nevertheless, we emphasize that the advocated approach is the only one which takes into 
account the shower fluctuations properly and is able to specify in a transparent way 
quantitative difference between model predictions and experimental data for different 
species of primary flux and various EAS parameters in wide primary energy range.  
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CHAPTER 7.  
JOINT ANALYSIS OF THE ANI AND KASCADE 
EXPERIMENT 

7.1  NUCLEAR - ELECTRON CASCADE IN THE ATMOSPHERE 

The intensity of Extensive Air Showers (EAS) with fixed shower sizes Ne is assumed to 
decrease exponentially with increasing atmospheric depth of the observation level. This is 
considered to be due to the absorption of the particles of the EAS cascade following an 
exponential law 

𝑁i(𝑋) = 𝑁i(𝑋{)exp -−
czcU
d
.,   with X�X0                    (7.1) 

X0  is a definite initial atmospheric depth after the maximum of the longitudinal development 
where the number of (charged) particles is  𝑁i(𝑋{) and further decreasing exponentially, 
𝑁i(𝑋)  is the  
number of particles of the EAS at the slant depth  X[g • cm-2}. The quantity Λ controls the 
attenuation of particles of the individual cascade (Hayakawa, 1969) (size attenuation length). 

The attenuation of the flux intensity of Extensive Air Showers is characterized by a 
related quantity λN (intensity attenuation length, absorption), which can be directly measured 
by cosmic rays detector arrays located at different atmospheric depths. Thus, measurements 
of the attenuation of the EAS intensity in the atmosphere are considered to be an interesting 
source of information about hadronic interactions, especially if extended to the ultrahigh 
energy region expected from the forthcoming LHC and TESLA accelerators. In addition due 
to the sensitivity of the cross sections to the mass of the primary, alterations of the 
attenuation length with the energy may be indicative for the variations of the mass 
composition. Measured results also imply tests of the energy dependence of the extrapolated 
cross sections used for Monte Carlo simulations. The investigations of the present paper are 
based on an EAS sample measured 1997- 1999 with the MAKET ANI array (Avakyan et al., 
1993), (Hovsepyan, 1998) on Mt. Aragats station (Armenia) and registered for different 
angles-of-incidence in the zenith angle interval Θ = 0 − 45o . The data basis of the analysis 
can be enlarged by published data from KASCADE (1046g ⋅ cm−2 ) (Klages et al., 1998) 
experiment. 

We apply different procedures to deduce the attenuation. First we consider the 
degradation of the EAS flux with fixed shower size 𝑁i with increasing zenith angle i.e. 
increasing atmospheric thickness of the shower development (characterized by the intensity 
attenuation length λN (Kristiansen et al., 1975)). Differently the technique of the constant 
intensity cut (GIG) (Nagano et al., 1984), (Gaisser, 1992) considers the intensity spectrum of 
EAS events and relates equal intensities observed at different atmospheric depths for 
obtaining cascade curves. 

7.2  ANI-KASCADE EXPERIMENTAL SPECTRA 

The experimental basis of the present investigations are measurements of shower size 
spectra in the knee region and their zenith-angle dependence performed with the MAKET 
ANI array of the Mt. Aragats Cosmic Ray Station (3200 m a.s.l.) in Armenia. Details of the 
measurements and the experimental procedures taking into account the detector response are 
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e 
given elsewhere (Gharagyozyan, 1998), (Blokhin at al., 1999). For a detailed description of 
the knee region the traditional approximation with two different spectral indices below and 
above the knee-and consequent, defining the knee position as intersection of two lines in a 
logarithmic presentation, appears to be insufficient. Hence a more sophisticated method has 
been applied with parameterization of the slope of the spectra (see (Sokhoyan, 1998)). Table 
31 contains the characteristics of the size spectra measured with the MAKET ANI 
installation, the changes of the slopes in the knee region (∆N) . Spectral indices below ( γ ) 
and above ( γ ) the knee position  are correspondent to the showers arriving in the zenith-
angle range of Θ = 0 − 45o . 

For the analysis of the zenith-angle dependence, the size spectra are determined in 5 
angular bins of equal ∆ sec Θ widths. The accuracy of the zenith angle determination is 
estimated to be about 1.5° (Gharagyozyan, 1998). A correction due to barometric pressure 
changes, which leads to small fluctuations of the atmospheric absorption, has not been made. 
Figure 54 displays the size spectra in graphical form. On the figure the KASCADE 
experiment (located at sea level) data (Glasstetter, 1998) are also plotted. 

By the following fixed intensities of the size spectra (see horizontal dashed lines at 
Figure 56)  the cascade curves (shower size dependence on the atmospheric depth for fixed 
primary energy) can be immediately reconstructed for several fixed flux intensities (primary 
energies) as shown  in Figure 55. Note that the results in the range of the slant depth 
observed with the ANI array (near shower development maximum) deviate from the 
exponential decrease eq.(7.1). That is an important feature which can be revealed more 
clearly when combining spectra accurately measured on different altitudes. In the present 
paper we accept the model of exponential decrease of electron number in shower according 
to eq.(7.1). It is our interest to explore, if this  assumption applied to the ANI and 
KASCADE data leads to consistent results. 

 

      
Table 31. The Summary of the Measured Differential Flux and Knee Region Parameters, Zenith 

Figurem 54. Differential size spectra for 
different zenith angles ranges observed with 
MAKET ANI array, compared with spectra 
reported by the KASCADE (Glasstetter, 
1998) and the EAS TOP (Aglietta et al. 
1999) collaborations Primaries 
 

Figure 55. Ne cascade in the observed 
range of the atmospheric slant depth. 
 



 
98 

Angles Range of (0° — 45°), Altitude 3200m (intensities are given in m-2 s-1 sr-1 unit) 

𝜰𝟏 -2.50 ± 0.002 
𝜰𝟐 -2.87 ±0.020 

𝜟(𝑵𝒆𝒌) (8.13 ±0.037) •105  -   (2.19 ±0.052) • 106 

𝑵𝒆𝒌 (1.37 ±0.04) •106 

𝑰(𝑵𝒆𝒌) (2.14 ±0.11) •I0-13 
 
7.3  PROCEDURES FOR INFERENCE OF THE ATTENUATION LENGTH FROM 
SIZE SPECTRA 

We  consider  the  differential  and  integral  size  spectra  I (Ne , X ) and I (> Ne , X ), 
respectively. In addition to the basic assumption of exponential attenuation of  Ne  
(eq.(7.1)) a power-law dependence of the size spectrum with the spectral index γ is adopted. 

 

   
 
7.3.1   ATTENUATION OF THE INTENSITY OF FIXED Ne: ABSORPTION LENGTH 

For different fixed values of shower size 𝑁i, on different depths in the atmosphere 
(or/and different zenith angles of incidence), from measured spectra we obtain several values 
of corresponding intensities from the equivalent depths from 700 till 1280 g•cm-2 (see Figure 
56). By fitting the depth dependence of the intensities by the straight line (in logarithmic 
scale) according to equation: 

𝐼(𝑁i,𝑋) = 𝐼(𝑁i,𝑋{)exp -−
czcU
+þ

.                                (7.2) 

we obtain the estimate of the absorption length  𝜆Á. The absorption length can be estimated 
both by integral and differential spectra. 

Figure 56. Integral size spectra for different 
zenith angles ranges observed with MAKET 
ANI array, compared with spectra reported  
by the KASCADE (Glasstetter, 1998): 
illustration of the procedures for absorption 
and attenuation length estimates. 
 
 

Figure 57. Indices of EAS size differential 
and integral spectra in comparison. 
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7.3.2  CONSTANT INTENSITY CUT (CIC) 

The basic idea of this procedure is to compare the average size of showers which have 
the same rate (showers per m2 ⋅ s ⋅ sr ] in the different bins of the zenith angle of shower 
incidence and different slant depth, respectively (Nagano et al., 1984). 

 
Figure 58. (a-d) Fluctuations of energy for different integral intensities and zenith angles 
 

Considering two different depths in atmosphere X1, X2 >X0 the expressions of 
differential intensities I (Ne , X ) has the form 

𝑁i(𝑋G)zkexp ;−(𝛾 − 1)
c+zcU
d

< = 𝑁i(𝑋�)zkexp ;−(𝛾 − 1)
c,zcU
d

<          
(7.3) 

 
With simple transformations we obtain: 

Λ�5¦¦(𝐼) =
kzG
k

c,zc+
mn-þ²(o+)þ²(o,)

.
                             (7.4) 

The attenuation lengths, obtained by integral spectra do not depend explicitly on spectral 
index: 
 

Λpnò(𝐼) =
c,zc+

mn-þ²(o+)þ²(o,)
.
                     (7.5) 

Practically the estimate of the attenuation length is obtained by fitting the Ne dependence 
on the depth in atmosphere by the straight line according to the equation (7.1). The sequence 
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of Ne values is obtained according to the fixed values of the flux intensity, selected from the 
interpolation curves of the differential or integral size spectra. The value of Λdiff(I ) is 
estimated by Selecting equal intensities (≈ primary energies) corresponding to different 
shower sizes Ne 

and different depths. The intensity values from 10-9 to 5.•10-6 were used for 
CIC method. 
 

7.3.3  WHICH PRIMARY ENERGIES WE SELECTED BY CIC METHOD? 

The tacit assumption that by cutting on the same EAS size spectra intensities, we chose 
approximately constant primary energy was checked during pilot study with simulated 
samples. CORSIKA 562 code (Ostapchenko) was used for simulation of EAS traversed 
through atmosphere; MAKET ANI response function was taken into account (Blokhin at al., 
1999). Mixture of the primary nucleus and partial flux intensities were chosen according to                                       
(Ter-Antonyan). Approximately 300,000 events were used to construct Integral spectra in 5 
angular bins. Figure 58 a) demonstrates the distribution of the primary energies of events 
falling in the size spectra bins correspondent to different horizontal cuts of spectrum for the 
first zenith angles interval (0° - 22.6°) (see also 7.3). The variances of the energy 
distributions, correspondent to different intensity cuts are decreasing with increasing of 
energy. 

Figure 58 c) depicts the "selected energies" distributions for fixed EAS flux intensity and 
different angles of incidence. The unbiasness of distributions mode proves that by "cutting" 
spectra we are choosing EAS events, corresponding to approximately same primary energies. 
Figure 58 b) demonstrates the relative errors of assigned energies. Increasing of errors with 
increasing of zenith angles is evident. On altitude 3200m. primary energy variance of 
"cutted" events didn't exceed 50%. 

Figure 58 d) shows dependencies of spectra intensities on correspondent mean energies 
for five zenith angle intervals. The approximate linearity of E-I relation for all angular bins 
and majority of energies is observed, therefore we'll use primary energy estimate obtained 
from this relation. 

7.3.4  THE RELATION BETWEEN THE ABSORPTION                                                                          
AND  ATTENUATION  LENGTH 

We consider the quantity I(Ne,X)dNe - the number of EAS at the depth  X  which comprise 
Ne to Ne + dNe particles fallen  in  (Ne-Ne+dNe) interval: 

𝐼(𝑁i,𝑋)𝑑𝑁i~𝑁i
zk𝑒𝑥𝑝 ;−(𝛾 − 1) czcU

r
<𝑑𝑁i                  (7.6) 

With eq.5.2 we obtain: 

Λ�5¦¦(𝑁i) = (𝛾(𝑁i) − 1)𝜆Á                            (7.7) 

where, γ(Ne) is the differential size spectra index (therefore, for λ estimation we have to 
usethe Ne intervals where γ  is not changing dramatically). For the integral spectra: 

Λpnò(𝑁i) = 𝛾(𝑁i)𝜆Á                              (7.8) 

where, γ (Ne) is integral size spectra index. 



 
101 

For the evaluation of the inelastic cross section and for comparison of the three methods 
described above we propose to use the calculated values of the attenuation length  Λ (instead 
of using absorption length lN ). The attenuation of the number of particles in the individual 
cascade is more directly connected with the characteristics of the strong interaction and does 
not depend on the parameters of the cosmic ray flux incident on the atmosphere. In its turn 
the absorption length, i.e. the attenuation of the CR flux intensity, reflects also characteristics 
of the primary flux and is dependent on the change of the slope of the spectra. 

7.3.5 ESTIMATE OF THE INELASTIC CROSS SECTION 

The inelastic cross sections of the primary nuclei with atmosphere nuclei is related by 
(Nagano et al., 1984): 

𝜎 zÜ5�
5Èi÷ (𝑚𝑏𝑎𝑟𝑛) = �.`G⋅G{s

+t(Ý⋅uÞó,)                     (7.9) 

where A denotes the primary nuclei. The quantity λA is the interaction length of the A-
nucleus in the atmosphere (note: in some publications the interaction length is denoted by λN  

, where N is primary nuclei, in contrast in this paper N is reserved for the shower size). The 
interaction length λA is related with the absorption length λN  by 

𝜆` = 𝐾(𝐸) ⋅ 𝜆Á                                         (7.10) 

The K (E ) coefficient reflects peculiarities of the strong interaction model used for 
simulation. The value of the parameter K has to be determined by simulations of the EAS 
development in the atmosphere and by detector response. Such studies require the de- 
velopment of procedures for the selection of EAS initiated by primaries of a definite type 
(see example in (Chilingarian et al., 1999), (Vardanyan et al., 1999)). 

7.4   ESTIMATION  OF  THE  ATTENUATION  LENGTH 
The mean values of the attenuation lengths obtained by various methods from data of the 

ANI and KASCADE installations, as well as for the joint ANI & KASCADE data by the 
differential Λdiff  and integral spectra  Λint are compiled in the Table 32 and Table 33. 

The discrepancies of alternative estimates of the attenuation length reflect the inherent 
uncertainties of the methods and the statistical errors, as well as the fluctuations of cascade 
development in the atmosphere. The energy dependence of the inelastic cross section and 
possible changes in mass composition also are reflected in the curves. 
Table 32 Attenuation lengths for the data from the MAKET ANI and KASCADE installations 
estimated by the CIC method from differential and integral size spectra 

Min.depth                       MAKET ANI ANI + KASCADE KASCADE 

0,g•cm -2  Λdif Λint Λdif Λint Λdif Λint 

700  250 ± 26  246 ± 16  211 ±6  206 ±9  —  —  

758  242 ± 33  231 ±20  205 ±6  200 ±8  —  —  

816  228 ± 50  221 ±29  200 ±7  195 ±8  —  —  

1020 — — — — 186  183  

Table 33 Attenuation lengths for the data from the MAKET ANI and KASCADE installations 
estimated by the recalculation from the absorption length for differential and integral size spectra 
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Min.depth        MAKET ANI ANI + KASCADE KASCADE 

X0,g•cm -2 Λdif Λint Λdif h Λint Λdif  Λint 
700  243 ± 20  254 ± 21  211 ±6  206 ±9      —      —  

758  231 ±17  242 ± 16  205 ±6  200 ±8      —      —  

816  221 ± 23  237 ± 24  200 ±7  195 ±8      —      —  

1020       —       —       —      —     180  186 ±7  

 
As we can see in Figure 55, the values corresponding to the minimal equivalent depths 

of used MAKET ANI data, deviate significantly from the exponential dependence. The 
observations reflect the flattening of the cascade curve just after the shower maximum, 
expected at the altitudes 500 - 600 g • cm'2. Therefore, due to these features the attenuation 
lengths calculated by MAKET ANI data appear to be significantly larger than those derived 
for the KASCADE data (Table 32, Table 33). 

 
Figure 59. Attenuation length obtained by joint analysis of the MAKET ANI and KASCADE data. 

Consequently, for the combined analysis of the KASCADE and ANI data we omitted the 
first and the second zenith angle bins of MAKET ANI and calculate the attenuation lengths 
by the remaining 9 (minimal equivalent depth 758 g • cm-2) and 8 (minimal equivalent depth                       
816 g • cm-2) angular bins. The dependences of estimated values of attenuation length on the 
shower size and flux intensity for different amount of the angular bins used, are displayed in 
Figure 60 and Figure 61. The attenuation length estimates obtained from the differential and 
integral spectra agree fairly well. The results of both GIG and recalculation from absorption 
length agree within the error bars. The results obtained by the "attenuation of knee position" 
are larger for MAKET ANI and KASCADE. 

By taking the advantage of the precise measurements of the cascade curves by 
KASCADE and ANI detectors we fit joint data with one decay parameter for the first time 
(see Figure 59). The "knee" position, obtained by fitting of the size spectra, also are posted 
on the picture. 

There is a concentration of the knee positions on the curve showing the dependence of 
the attenuation of the flux intensity (≈ primary energy). In its turn, the curve displaying the 
dependence of the attenuation length on the shower size demonstrates a rather large  
dispersion of the "knee positions". Interpretation and physical inference based on the 
obtained results will require detailed simulation of cascade development in atmosphere and 
detector response now underway. 

Experimental studies of EAS characteristic like the depth of the shower maximum Xmax , 
the elongation rate dXmax/dlog10E and the attenuation length  Λ are of particular 
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importance, since they map rather directly basic features of the hadronic interaction. 
However, the interpretation of these quantities in terms of hadronic cross sections cannot 
bypass the necessity of detailed calculations of the shower development. Nevertheless, these 
type of EAS quantities, if compared with Monte Carlo simulation results, provide stringent 
tests of the interaction model used in simulations. 

The recent results of various experimental installations are sufficiently accurate to enable 
relevant studies of this kind, and combining the data from arrays situated on different 
altitudes (like MAKET ANI and KASCADE) allows a large span in the atmospheric slant 
depth for reconstructing the longitudinal development of the EAS. 

By use of methods to isolate different primary groups ("pure nuclear beams") of the size 
spectra (Vardanyan et al., 1999), (Gharagyozyan et al., 1999), these kind of interaction 
studies would get of extreme interest. 

 

What ANI is intended to do. 
The ANI package represents an unified methodology of multivariate data analysis and 

physical inference from the high energy cosmic ray physics experiments. The main 
procedures of ANI package are as follows: 

• Bayes and Neural Network (NN) classification and decision making; 
• Adaptive modes of class conditional probability density estimation; 
• Calculation of the Bayes risk. 
• Resolving of the distribution mixture statistic models. 
• Determination of method errors using Bootstrap model. 

• Library of Random Search methods of NN training. 
• Interdependent system of various NN training scenarios. 
• Best feature subsets selection and initial dimensionality reduction. 
• Evolutionary algorithms of Clustering. 

• Scanning of multivariate distributions to investigate and visualize embedded non- 

Figure 60. Attenuation Length  dependence 
on Spectra Intensity (Primary Energy) 

Figure 61. Attenuation Length dependence 
on the Shower Size Ne. 
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trivial structures; 
• Nonparametric (Bayes and NN) estimation of regression function; 
• Cross validation of obtained estimates and Stopping rules in NN training. 
• Committee principle of final decision. 

• Continuous comparison of alternative nonparametric techniques. 
• 2-dimensional Images Pattern Recognition. 
• Incorporation of the hardware neural accelerator. 
The developed methods were applied for the EAS data analysis. The data from world 

biggest KASCADE experiment were treated on event-by-event basis. The main physical 
results obtained from KASCADE data analysis are the following: 

1. Classification of the PCR into three nuclear groups was performed, the relative 
abundances of different nuclear groups on the primary energy were obtained; 

• Accuracy of the classification into light, intermediate and heavy groups of  nuclei  is 
- for light group ~80%, for intermediate group ≈60% and for heavy group ≈75%, 

• Relative abundances in the "knee" region (2 —4 x 1015 eV) are as follows: light 
group (H,He) ~0.6 ± 0.02 , intermediate group (C, N, O) ≈ 0.32 ± 0.06 and heavy 
group (Si-Fe) ≈ 0.08 ± 0.04, 

• Spectral exponent index of the "light" nuclei flux demonstrate slight increase before 
the "knee" and turn to decrease after the "knee", while there was no evidence for the 
decrease of the "intermediate" and "heavy" nuclei flux spectral indexes above the 
"knee" energies. 

2. Estimation of energy of the PCR in the range of 1014 — 1016 eV is performed and for 
the first time the energy spectra of three spices of PCR are obtained; 
Relative error of the energy estimation is  ≈25%, 
"Knee" feature is observed in all-particle and "light" nuclei spectra. 

3. Using developed NN methodology the possibility to obtain pure CR beams and to 
make experiments with such beams was demonstrated: 
Achieved purity of the "light" and "heavy" nuclei is more than 90% while the 
efficiency of the selection is kept >50%, 
General agreement of dependencies in real data and QGSJet simulations is 
demonstrated for the light group of nuclei. 
It is also worth to mention achievements in designing combined hardware-software 
systems for accelerating various Neural Net applications and constructing fast 
"intelligent" trigger for world biggest MAGIC Atmospheric Cherenkov Telescope. 
New algorithms were realized in Fortran77 and C programming languages, the 
graphical interface for ANI was written using TCL 7.6 script and TK 4.2 toolkit, (for 
details on ANI and graphical user friendly interface see the  Annual 
Report 1998) which are available on most of UNIX and LINUX platforms; ANI 
program package User Guide with tutorials was prepared according to the project 
partners request; 
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Tests and benchmarks with MiND PCI board of SAND/1 neurochips delivered by 
project collaborators - Institute for Electronics and Data Processing, Research Center 
Karlsruhe, were done; 
New drivers for MiND PCI board for Linux OS was developed, optimized and tested; 
Graphical user interface was written using gtk+ 1.2.8 to provide an easy access to the 
SAND kit and its drivers under Linux OS. Space Weather Forecast. 

7.5  CONCLUSION 
The most general framework in which to formulate solutions to physical inference 

problems in High Energy Cosmic Ray (CR) Physics experiments is a statistical one, which 
recognizes the probabilistic nature both of the physical processes of cosmic radiation 
propagation, and of the form in which the data analysis results should be expressed. To make 
the conclusions about investigated physical phenomenon more reliable and significant we 
have developed a unified theory of statistical inference, based on nonparametric models, in 
which various nonparametric approaches (including Neural Networks models) are 
implemented and compared. In this context in is necessary to mention that we consider the 
Neural information technology not as " black box", but as an extension of conventional 
nonparametric technique of statistical inference. 

The ANI program package is the software realization of our concept and appropriate tool 
for the physical inference. During last 3 years ANI package was updated and intensively used 
for comparisons of different nonparametric techniques and for data analysis of CR physics 
experiments. 

The challenge of Extensive Air Shower (EAS) investigations is to infer reliably from the 
observed data the development of cascade in atmosphere and its dependence from the mass 
and energy of primary particle. One of the important tasks in experiments (often 
underestimated) is to understand the performance and response of the detectors with 
sufficient accuracy for a reliable reconstruction of meaningful shower parameters, starting 
from measuring energy deposits and time signals in single detector elements. 

It is specific for cosmic ray experiments that there is no possibility to calibrate the 
detector output by use of a suitable test beam of known quality like in accelerator 
experiments. In the theoretical analysis of the measured and reconstructed EAS parameters 
the major uncertainties of systematic character arise from the lack of our knowledge of the 
total cross sections and of details of particle production for high - energy hadronic 
interactions with small momentum transfer. The proton collider results have to be 
extrapolated over many orders of magnitude, to forward angle emission and to the case of 
complex nuclear projectiles and targets. 

Standard Neural Network architectures, such as FFNN always have too large parameter 
space; therefore they are prone to overfilling. While the network seems to get better and 
better (the training, apparent error decreases), at some point during continues training it 
actually begins  to get worse again (the control, generalization error increases). The standard 
cross-validation technique is checking the generalization error on the independent control 
sample and stop when generalization deteriorates. However, the real situation is a lot more 
complex. Real generalization curves almost always have more than one local minimum. 
Thus, it is  impossible in general to tell from the beginning of the curve whether the global 
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minimum has already reached or not, i.e., whether an increase in the generalization error 
indicates real overfilling or is just intermittent. 

The choice of the Neural Network learning algorithm depends on many problem 
dependent factors, like the complexity of the problem, availability of the training set, real-
time requirements, the cost of the losses (required quality of the solution). Hence it is not 
possible to give an unique decision on what strategy to follow. Nevertheless, the goal of each 
training algorithm is to achieve a good generalization performance relatively easy and fast 
(low resources requirements and efficiency of algorithm). 

Different modes implemented in ANI package (single, neuron, multi] give a possibility 
to perform different training strategies, obtaining quite different points of multidimensional 
space of neural net weights, and allow to investigate symmetries of nontrivial local minima 
in this space. 

The low level trigger (LO) rate from planned Cherenkov Atmospheric Telescopes (ATC) 
of new Generation as MAGIC, is dominated by Night Sky Background (NSB) and the 
Photomultiplier (PMT) afterpulsing and at low thresholds trigger rate can reach 1 MHz for 
each channel. For the practical telescope operation the trigger rate must be in the region less 
than 100 Hz. Therefore, 1 MHZ rate has to be reduced down to the few of kHz and tenths of 
Hz by the higher level triggers (LI and L2). 

LO can be derived from four-fold majority coincidence of all pixels. LI can be 
constructed using sophisticated coincidence chime, exploiting the topology of hits pattern 
requiring close- 

patched configurations. To obtain short trigger decision times (≈100nsec) the Altera 10K 
family programmable logic devices can be used. LI trigger will provide reduction of the 
trigger rate down to several units of kHz. For further reduction we propose to use neurochip 
SAND as fast "intelligent" trigger. L2 Pattern Recognizing Trigger (PRT) can help to reject 
muon and hadron backgrounds which at present is only possible off-line. 

For the first time we intended use whole pixel information as input of analysis in contrast 
with significant reduction to the second moments of pattern (Hillas parameters) used 
previously. 

Trained combined hard/software networks will provide possibility to enlarge signal-to-
noise ratio. For working with such huge inputs new network training algorithms and 
powerful training accelerators are implemented in ANI package. 

The primary aim of EAS studies is to determine the mass composition, energy spectrum 
and anisotropy of arrival directions of the primaries. The intermediate-energy region (1015 — 
10l6eV), where pronounced structures in the charged particle spectra are observed more than 
forty years ago, is of particular interest as the Supernova (SN) driven stochastic shock 
acceleration mechanism is expected to fail in this region. However, the direct evidence is 
lacking to support strongly this models. 

Measurements of the energy spectra of the individual species of the Cosmic Ray flux can 
provide a detailed description of the structures in knee region, revealing the rigidity cut off, 
inherent to Fermi acceleration, or peaks, corresponding to the individual elements fluxes 
from nearest SN. 

Obtained using CORCIKA data base and ANI training modes energy and primary 
estimators were applied for analysis of experimental data of ANI and KASCADE 
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experiments. 
Combining data from two installations, located on 3200 m and on sea level, enlarged 

significantly amount of physical information on the propagation of cascades in the 
atmosphere. Very broad slant depth from 700 — 1300g/cm2 allows to investigate in details 
the cascade curves and estimate elongation and absorption lengths with accuracy, never 
obtained with single installation. New methodology of mutual analysis of the size spectra 
brings new interesting physical results and new step to solving long standing problem of the 
origin of the high energies cosmic rays. 

Selection of the light "nuclei" performed by ANI MAKET installation and "light", 
"intermediate" and "heavy", performed by KASCADE installation allows at first time to 
investigate partial size spectra of primary cosmic ray radiation. The first conclusions from 
the comparative analysis of these data are confirming hypothesis of the Supernova Remnants 
as source of cosmic rays and rigidity dependent Fermi acceleration in supernova explosion 
shock waves. 
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CHAPTER 8. CHARACTERISTICS OF THE LIGHT 
AND HEAVY MASS GROUP COSMIC RAY FLUX 
OBTAINED BY MAKET-ANI DETECTOR 

8.1  COSMIC RAYS IN THE VICINITY OF EARTH 
Cosmic Ray (CR) flux incident on terrestrial atmosphere consist mostly of protons and 

heavier stripped nucleus accelerated at numerous galactic and extragalactic sites. Most 
exciting problem connected with cosmic rays is exploration of a particular astrophysical 
accelerating source. Due to the bending in galactic magnetic fields charged particles lost 
information about parent sites during long travel and arrive at Earth highly isotropic. Only 
stable neutral particles i.e. roentgen, gamma quanta and neutrinos travel directly from 
sources and reveal exotic celestial objects and violent processes of their production. Orbiting 
telescopes and spectrometers as well as ground based Atmospheric Cherenkov Telescopes 
(ACT) and neutrino detectors opened new windows to Universe detecting in unprecedented 
details spreading of heavy elements during supernovae explosions, ejection of the relativistic 
jets from black holes and many other phenomena known in last century only from science 
fiction. 

New paradigm in astrophysics research consists in simultaneous detection of celestial 
objects in radio, optical, X and gamma rays. Variety of compatible measurements gives 
enough information for building realistic models of physical processes of supernovae 
explosion accompanied by the gamma-ray bursts, of accretion discs interactions with super 
dense objects and finally about the evolution of Universe itself. In this concern adding 
information on particles of highest energies will significantly enlarge information on most 
violent processes in Universe and on operation of the biggest particle accelerators in space. 

Galactic cosmic rays can’t map the objects where they burn, so, only integrated 
information from all sources are available from measurements of cosmic ray fluxes nearby 
Earth and on Earth surface. This information contains in the shape of the energy spectra of 
cosmic rays, in the mass composition and its energy dependence, and in anisotropy of CR 
arrival. 

Space-born spectrometers at ACE space station, AMS detector on Space Shuttle as well 
as numerous balloon-born detectors precisely measure fluxes of different isotopes up to 
energies of 10 TeV. 

Particle fluxes follows an overall power-law I (E) ~ Eγ with spectral index of γ ~ -2.7, 
therefore because of very weak fluxes of the CR of heist energies and due to very strict 
restrictions on the spacecraft payload it is extremely difficult to get reliable information on 
particle fluxes above 10 TeV from space-born spectrometers and calorimeters. Although 
recent successes with long-lasting new technology balloon flights give hopes that precise 
information on particle spectra up to several hundreds of TeV will be available soon. 

Recently, so called kinematical method (Adams et al., 2001) was proposed, using thin 
(about 10 g/cm2) target and silicon coordinate and charge detectors for precise detection of 
the charge and emission angles of secondaries produced in an inelastic interaction of primary 
nuclei. The angle distribution of the particles produced in the target carry information about 
the energy of a primary particle. This technique does not require total release of energy like 

ionization calorimeter and could be made very light. One-Ear flight on Space Station of 
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such device will provide data up to several PeV with 0.2 units of charge resolution. 
No space experiment in the PeV region currently is funded and at least in current decade 

data will be assessable only from the Extended Air Showers (EAS) initiated by the “primary” 
ion triggering particle generation chain reaction in terrestrial atmosphere. A variety of 
physical processes during travel of the relativistic cloud of “secondary” particles to the earth 
surface gave rise to different experimental methods, aiming to reconstruct the particle type, 
trajectory and energy. 

Signatures of the primary particles are microwave radio signals, fluorescent light, 
cherenkov light, electrons, muons, neutrons and hadrons reaching Earths surface, muons 
detected deep underground. Intensity and correlation matrix of each of combination of 
mentioned signals carry information on primary, but due to highly indirect nature of the 
experimentation, only some very robust characteristics of cosmic ray flux of PeV and higher 
energy primaries were unambiguously established till now. First of all it is all particle energy 
spectra, reconstructed from so-called size spectra measured by plastic or liquid scintillators 
(so called particle density detectors), distributed on the surface up to several tens and 
hundreds of thousands of square meters with detector coverage of very few percent or tenths 
of percent. Assuming definite shape of EAS electron lateral distribution function and 
measuring density of electrons on some rectangular or circular grid of distributed density 
detectors, and using standard minimization technique the overall number of electrons 
(shower size) could be determined. 

Simultaneously measuring by the system of distributed “fast timing detectors” the time 
delay of arriving of particles from inclined “shower disc”, the zenith and azimuth angles of 
the shower core can be calculated (very good estimate of the primary particle angles of 
incidence on the terrestrial atmosphere). 

Shower size is correlated with particle energy, but also with several unknown parameters 
such as particle type and height of first interaction. The functional form of size-energy 
dependence introduce additional uncertainty, because it is obtained from particular model of 
strong interaction of protons and ions with atmosphere nuclei, and at PeV energies there are 
no accelerator data to check this models. Different approximations of models fitted with 
manmade accelerator data at lower energies give significantly different results at higher 
energies. 

Nevertheless, during last 50 Ears some important characteristics of spectra were 
established during intensive measurements with EAS surface detectors (for the list of 
detectors and their operational characteristics, see (Haungs et al., 2003). The most striking 
feature of spectra is approximately constant power index in energy range more than a decade. 
Power index slightly changed from value γ ~ -2.7 to value γ ~ -3.0 at 3-4  PeV (“knee” or 
suppression of      spectra) and it is another important and well established feature. Some 
authors (Nikolsky et al., 2000), (Nikolsky et al., 2003) claim that this “knee” is feature only 
of size spectra reflecting some peculiarities of EAS propagation and interaction in the 
atmosphere and flux  of cosmic rays incident on atmosphere can be described by constant 
power index and that the CR origin is of extragalactic nature. In paper (Stenkin, 2003), the 
“knee” is treated as consequence of the shower size reconstruction method only. The 
difference between pure electromagnetic showers and those having survived hadron "cores" 
is cause of the “knee”. Another, very interesting approach is connected with enigma of 
supernovae implosion and collapse. In (Plaga, 2002) the cannonball model of the supernovae 
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explosion (Dar et al., 1999) was proposed as source of the cosmic rays. The blobs of plasma 
with mass of Earth are ejected from poles of supernovae at nearly light-speed. The 
population of such plasmoids filling the Galactic halo is responsible for the acceleration of 
major part of hadronic cosmic rays with energies till another feature of all particle spectra, so 
called “ankle” occurred near 1018 eV. 

In contrast, the “standard” model of CR acceleration name the Supernovae remnants 
(SNR) as a major source of CR. The detected non-thermal radio emission from Supernovae 
Remnants (SNR), which led to the natural assumption of the presence of accelerated 
electrons, made SNR the main candidate engine for particle acceleration (Koyama et al., 
1995). Recent CHANDRA measurements of the X-ray distributions, obtained to very small 
spatial scale (Long et al., 2003) point on very large effective magnetic field of 100µG in the 
SN 1006. In the (Berezhko et al., 2003) authors conclude that such a large field could be 
generated only due the nonlinear interactions of the accelerated protons and stripped heavier 
nuclei with self- generated Alfven waves in a strong shock. Therefore, the SN 1006 data 
confirms acceleration 

of the nuclear component at least till several units of 1014 eV. Gamma-ray pulsars usually 
located near the 

SNR center are another candidate for the cosmic ray acceleration (Bednarek et al., 2002). 
As mentioned in (Bhadra, 2003) pulsar accelerated cosmic rays are expected to have a very 
flat spectra. Therefore, the impact of the nearest pulsar to energies higher than 

1014 eV can be tremendous and can explain the fine structure of the energy spectrum, 
which may reflect acceleration of the specific groups of nuclei. 

To investigate various scenarios of particle acceleration in SNR, we still have to use 
indirect information contained in Cosmic Ray spectra in the vicinity of Earth. 

As Galaxy magnetic fields can’t confine particles with such energies, the extragalactic 
origin of highest energies is widely accepted. MAKET ANI installation due to its modest 
size is effectively collected cores of EAS initiated by primaries with energies up to 1017 eV, 
therefore, we’ll constraint our analysis by energy range 5•1014 - 1017 eV - so called “knee” 
region. 

Energy spectra of primary ions from Z=1 to Z=26 will provide valuable information on 
validity of standard model. Information from the EAS experiments didn’t provide enough 
clues for such “spectroscopy” of the “knee region”. Nevertheless, precise measurements of 
electron and muon content, and implementation by the KASCADE experiment of the 
CORCIKA simulation code (Heck et al., 1998) as we demonstrate in numerous papers (see 
for example (Chilingaryan et al., 1999E), (Antoni et al., 2003)), allows classifying primaries 
according to  3 classes: “light”, “intermediate” and “heavy”.  Using nonparametric 
multivariate methodology of data analysis ((Chilingarian, 1989), references on development 
and application of methods contained in (Chilingarian et al., 2003B)) we solve the problem 
of event-by-event-analysis of EAS data (Chilingarian et al., 1991), using Bayesian and 
Neural Network information technologies (Chilingarian, 1994), (Bishop, 1995). 

On each stage of analysis we estimate the value of information content of variables used 
for EAS classification and energy estimation and restrict complication of the physical 
inference according to this value. MAKET-ANI experiment is located at 3200 m. above sea 
level; the quality of reconstruction of EAS size and shape are good enough and we can use 
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for EAS classification shower size and shape parameters (so called shower age). The 
distinctive information contained in distributions of these 2 parameters allows us to classify 
EAS with high level of accuracy into 2 distinct groups: initiated by “light” or “”heavy” 
nucleolus. In KASCDE experiment (Antoni et al., 2003) where muon content of EAS is 
measured additionally, and we can classify showers into 3 categories adding also 
“intermediate” class. Enlarging number of nuclear classes for more detailed classification can 
decrease quality of physical inference, see for example recent discussion of KASCADE 
collaboration results in Astroparticle Physics (Schatz, 2002). 

Proceeding from the MAKET-ANI data and including in the analysis also data from 
KASCADE experiment obtained with same data analysis methodology (Heck et al., 1998), 
(Chilingarian, 1998)), we’ll try proving or disapproving the standard model by our 
experimental evidence. 

Another intriguing problem of CR origin is connected with way how the “ensemble” of 
SN maintains the CR flux in vicinity of Earth. The fine structure of spectra at knee, 
suggested hypothesis that one or several recent nearby SN are responsible for spectra 
structures in knee region (Erlykin et al., 1997), (Erlykin et al., 1998). Therefore, 
identification of such SN and measuring additional flux of particles from its direction will be 
another proves of the standard model. 

The MAKET-ANI detector reveals significant excess of extensive air showers with 
arrival directions pointed to the Monogem ring, a supernova remnant located at a distance of 
≈300 pc from the Sun with ≈100 kyr old radio pulsar PSR B0656_14 near the center 
(Thorsett et al., 2003). 

8.2  COSMIC RAY ACCELERATION IN SUPERNOVAE EXPLOSIONS AND 
PROPAGATION IN THE INTERSTELLAR MEDIUM 

The power of cosmic ray sources should be more than PCR ~ 1041 erg/sec to maintain 
estimated cosmic ray energy density. This number was obtained by multiplying the CR 
energy density in Galaxy ρCR ~ 10-12 erg/cm3 by Galaxy volume VG ~ 1067 cm3 and dividing 
by particle mean escape time from Galaxy τesc ~ 1014 sec. 

Kinetic energy of supernova ejecta: WSNR ~ 1052 erg and frequency of SN explosions in 
Galaxy: freq ~ 20-1 Ear, lead to CR luminosity of same order of magnitude if we assume that 
a few tens of percent of ejecta kinetic energy is transformed to CR  energy. 

In addition detected non-thermal radio emission from SNR, leading to natural 
assumption of accelerated electrons, along with Fermi’s concept of particle magnetic 
interaction with macroscopic gas clouds, made SNR main candidate engine for particle 
acceleration. 

Supernova explosions and expanded shocks forming supernovae remnants were and are 
the favorite candidates for the source of cosmic rays in energy range from 1010 to 1017 eV. 
Power law is rather satisfactory describing spectra from 1012 eV (far above solar modulation 
effects), till several units of 1018 eV, where Galaxy magnetic field of 3 µG can’t confine 
particles anymore. At low energies till 1014 eV, where direct measurements are available, 
spectra indices of protons, carbon, oxygen and iron are very close to each other and equal to 
~-2.7. Same index is describing spectra of all particles from 5•1014 till 3-4•1015 eV (knee 
region), where power index changed to ~ -3, to again return to value -2.7 at 1017 eV (ankle). 
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The “classical explanation” of the changing behavior of spectra consist in existence of 3 
distinct acceleration mechanisms: first, usually connected with SNR shock acceleration, 
fading in knee region, second, unknown, responsible for energies from knee to ankle, and 
extragalactic, after ankle. 

Numerous papers are devoted to SNR-based acceleration. Obtained values of spectra at 
source obey power law with index γs ~ (-2.0 – -2.1). Models of particle acceleration in SNR 
can be compared with observations only if we accounts for the diffusion and escape of CR in 
Galaxy. Usually energy dependence of the escape time is taken also in form of power law – 
τesc ~ E- χ, and relation of spectra in source and detected spectra takes form: E-γ ~ E-
(γs+χ). Theoretical calculations of the diffusion coefficient are based on the assumption on 
the distribution of magnetic inhomogeneities in Galaxy. There are 2 main distributions: 
“Kolmogorov Spectrum”, giving χ=0.33 and “Kraichnan spectrum”, giving χ=0.5. 

Measurements of the spectra of low energy isotopes (“radioactive clocks”) gives another 
value of χ=0.6. This value, seem to be in perfect accordance with observed spectra of ~E-
2.7, but it refers only low energies available from satellite and balloon isotope spectrometers, 
additional measurements of isotope spectra at higher energies are needed. 

Another bulk of evidence is concern the possibility of estimation of the energy 
dependence of so called “mean” mass. As we can’t resolve Et the “all particle”spectrum, the 
attempts are made at least estimate the trend of changing “mean mass”. The calculations of 
the average depth of shower maximum, made by the fluorescence and Cherenkov detectors 
signal on “lightening” of mean mass just before the knee, and transition to heavies above the 
knee. 

This behavior could be explained by influence of one or several nearest SNR, giving 
additional surplus flux added to the smeared superposition of thousands Galaxy SNR. 

If knee feature is due only to numerous distant sources the steepening of the spectra 
should be much smoother than detected. Attempts to find time-temporal coordinates of SNR 
explaining observed fine structure of spectra heavily depend on the adopted energy 
dependence of the diffusion coefficient. Authors of recent estimates of the possible location 
of the Single Supernovae (SS), (Erlykin et al., 2003) proceeding from the “anomalous” 
diffusion introduced in  (Lagutin,  2001)  derives  to  following  boundaries:  300  –  350pc  
from  the  Sun  and  90 – 100 kEar old. They also adopted energy dependence of diffusion 
coefficient with χ=0.5. Very Long Baselene interferometric measurements of the 100 KEar 
old pulsar PSR656 + 14 (Brisken et al., 2003) locates pulsar in the center of the SNR called 
Monogem Ring at 300 pc distance from the Sun. And it was logical to assume that the 
Monogem Ring, the shell of debris from a supernova explosion, was the remnant of the blast 
that created the pulsar (Thorsett et al., 2003). The Monogem Ring was investigated as 
possible source of the high energy cosmic rays by MAKET-ANI data. 

8.3  THE MAKET-ANI EXPERIMENT 

The MAKET-ANI surface array (Chilingarian et al., 1999) consists of 92 particle density 
detectors formed from plastic scintillators with thickness of 5 cm. Twenty four of them have 
area 0.09 m2 and 68 area 1m2. The central part consists of 73 scintillation detectors and is 
arranged in a rectangle of 85 x 65m2. Two peripheral points of a distance of 95m and 65 m. 
from the center of the installation consists of 15 and 4 scintillators respectively. 

In order to estimate the zenith and azimuthally angles 19 detectors from 92 (with area 1m2) 
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are equipped with timing readout measuring the EAS front appearance with an accuracy of ~ 5 
ns. 

The photomultipliers (PM-49) are placed in light-tight iron boxes. Logarithmic 
amplitude- digital converters (ADC) and constant fraction discriminators (CFD) are 
assembled just above PM. The dynamic range of the registered particle number is ~ 5 x 103. 

Two types of triggers are used: 
1. The hardware trigger: at least 7 of 11 central density detectors are hit with more than 3 

particles. 
2. The timing trigger: at least 4 from 9 symmetrically arranged relatively to the center 

timing detectors are hit. 
If the first two conditions are fulfilled in time window of 20 µsec the event is stored. The 

trigger and data readout systems are done in the CAMAC standard. 
Monte-Carlo calculations shown that used trigger selects EAS with sizes Ne > 5•104  and 

cores located within the rectangle of 40 x 12m2 around the geometrical center of the 
installation. 

The uncertainties of the reconstruction of EAS parameters are as following: shower size           
∆Ne~ 10%, the shower shape (age) parameter - ∆s ~ 0.06. The accuracies of EAS angles 
determination are: ∆θ ~ 1.5° and ∆φ < 5°. 

In the period of 1998 - 2002 approximately 7,788,000 EASs were registered with 
effective registration time of about 24,000 hours. From these showers only ~ 963,000 events   
were selected for the spectra calculation. The selection criteria was to have more than 95% 
efficiency of registration, so we selected EAS core from more compact area around the 
geometrical center of MAKET detector, ensuring high efficiency of EAS registration. 

The following cuts were applied for the events selection: Ne > 105, 0.3 < s < 1.7,                                  
-24m < X0 < 24m, -12m < Y0 < 12m , θ<45°. The details on MAKET-ANI operation and 
investigations of the uniformity and accuracy of parameter reconstruction are summarized in 
(Hovsepyan et al., 2003). 

During multiyear measurements, the detecting channels were continuously monitored. 
Data on background cosmic ray spectra was collected for each detector. The slope of the 
spectra was used for detector calibration. Slope of background spectra is very stable 
parameter didn’t changing ever during very severe Forbush decreases, when the mean count 
rates can decrease up to 30% (Chilingarian, 2003). The detailed information of the MAKET-
ANI detector operation in 1997-2003, various comparisons and uniformity checks are 
summarized in (Vardanyan et al., 2003). 
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Figure 62. MAKET-ANI detector setup 
8.4  SELECTION  OF  EAS  PARAMETERS  FOR  CLASSIFICATION                                         
AND ESTIMATION 

We are interesting in choosing combination of the EAS measured characteristics 
significantly differing for light and heavy initiated showers. The discriminative power of 
EAS characteristics were investigated using CORSIKA. (Heck et. al., 1998) and MAKET-
ANI response simulation codes (Hovsepyan, 2002). 

For comparison of EAS initiated by different primary ions a number of statistical 
methods were used, including one-dimensional statistical tests, correlation analysis and 
misclassification rates estimation by neural and Bayesian classificators. 

Input parameters of simulation program included particle type, energy, angles of 
incidence, as well as geographical coordinates and altitude of MAKET-ANI detector. 
Energy and  angular distributions were taken in a way allowing forming samples according 
to modern theoretical expectations. Due to stochastic nature of particle propagation through 
the atmosphere the output parameters of simulation programs are random variables. By the 
numerous simulations of cascades we obtain statistical characteristics of these random 
variables, posted in the Table 34. We also put in table the variable we can’t directly measure 
– the primary energy E0, for investigation its correlations with measured EAS parameters. 
The detection techniques superimpose additional random “noise” to measured entities, 
therefore it is extremely difficult to isolate “pure” states, i.e., showers generating by the 
particular primary ions.  Therefore  we’ll  precede  from  arbitrary  assumption  of  2-way  
division  of all primary nucleolus, so called, light and “heavy” mass groups. As 
representatives of light group we’ll take proton and He nucleus, for heavy group Si and Fe 
nucleus we’ll be representatives. As we will see, the intrinsic differences of the light and 
heavy ion cascades in the atmosphere make distributions of EAS parameters different. We’ll 
investigate is this difference enough for reliable 2-way classification and how the detector 
response smeared it. Due to isotropy   of    the primary flux, we can’t expect any differences 
between angular parameters and coordinates of shower axes (X0, Y0 ). Integrated over whole 
energy range shower sizes of heavy and light nuclei initiated EAS also are very similar. Only 
parameter, showing significant difference is shower shape – age (s) parameter. Although the 
detector smear this difference (see Figure 63), difference remain significant, and as we’ll see 
further the different correlations of this feature with shower size made pair (Ne , s) effective 
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both for classification and energy estimation. 
In Table 35 we enumerate differences between alternative one-dimensional distributions 

by the so-called P-values of statistical tests (Aharonian et al. 1990). We use parametric 
Student t statistics, D – Kolmogorov-Smirnov tests statistics and Mahn-Whitney 
transmutation statistics U. Statistical tests are checking so called H0 hypothesis consisted in 
the statement that 2 distinct examined samples (i.e. EAS generated by proton and iron nuclei) 
are coming from one and the same distribution. If P-value of test is big enough it is highly 
improbable that H0  is true. And higher is P-value, with higher statistical significance we can 
reject H0        and, therefore, we can use P-values for estimating “overlapping” of distributions – 
the greater value of test, smaller is overlapping. Overlapping is directly proportional to 
expected misclassification rate, and therefore we can measure “the discriminative power” of 
variables by the P-values. Greater P-value – greater discriminative power. Of course, we can 
make only relative estimates comparing different variables, or same variable before and after 
detector smearing, no precise estimates of misclassification rates could be made. For it we 
have well establish procedures of Bayesian risk estimation, but nevertheless P-values 
provide fast and statistically sound possibility of comparing EAS characteristics and 
influence of detector response function. From Figure 63 it is apparent that detector smearing 
significantly enlarges overlapping of distributions of age parameter, related to p and iron 
initiated showers. Corresponding P-values, as we can see from Table 35, decrease from 159 
to 125. Also we can deduce from Table 35 that shower age parameter s has best 
discriminative power, shower size Ne , because of integration over broad energy range, is 
obviously less effective for distinguishing p and Fe-initiated showers. Other listed in table 
variables, obviously, has not discriminative power at all, because angular distributions and 
core co-ordinates should be highly independent from primary particle type. All three 
statistical tests give very coherent results for the EAS parameters when comparing proton 
and iron samples. 

From Table 35 and Figure 63 we can make conclusion that it is extremely important to 
take into account detector response, visa verse the physical conclusions will be optimistically 
biased. The shape of the shower due to not perfect sampling of cascade electrons (MAKET- 
ANI detector coverage is less than 1%) is distorted during detection and reconstruction 
procedures, therefore this parameter loose portion of its “discriminative power”. 

Table 34. EAS parameters for p and Fe primaries 
 

              Without   detector   response               Detector   response 
 Mean MSD Mean MSD 

 H Fe H Fe H Fe H Fe 
lnE0 13.35 14.35 1.21 1.15 13.34 14.35 1.19 1.15 
lnNe 12.08 12.36 1.26 1.32 12.15 12.41 1.20 1.29 
S 0.97 1.15 0.10 0.10 0.94 1.10 0.15 0.14 
X0 -0.52 -0.61 18.70 19.2 -0.68 -0.69 18.64 19.24 
Y0 0.13 0.18 10.0 10.0 0.21 0.07 10.06 10.27 
cosθ 0.87 0.87 0.09 0.09 0.87 0.87 0.09 0.09 
φ 3.13 3.14 1.82 1.82 3.14 3.12 1.82 1.82 

Table 35. One-dimensional tests of p-Fe samples (t- Student, D- Kolmogorov-Smirnov, U- Mann 
Whitney) 
 without  detector  response with  detector  response 



 
116 

 t D U t D U 
lnNe 20.87 9.88 22.97 20.49 8.97 21.41 
S 158.94 56.69 125.03 104.63 41.31 95.37 
X0 0.43 1.35 0.29 0.44 0.06 1.38 0.31 1.27 
Y0 0.89 0.42 5.32 2.55 1.43 1.00 5.97 2.85 
cos θ 5.36 0.29 0.89 0.29 6.06 1.16 1.11 1.17 

 

Table 36. One-dimensional tests of p-He samples (t- Student, D- Kolmogorov-Smirnov, U- Mann-
Whitney) 
   

 without detector response with detector 
 t D U t D U 
lnNe 2.58 1.48 1.72 2.18 1.77 2.55 
S 41.76 15.39 38.61 23.92 9.24 22.64 
X0 0.70 0.86 0.73 1.13 1.23 1.15 
Y0 0.32 0.52 0.31 0.33 1.06 0.38 
cos θ 1.41 1.04 1.32 1.36 0.95 1.42 

Table 37. One-dimensional tests of Si-Fe samples (t- Student, D- Kolmogorov-Smirnov, U- Mann-
Whitney) 
 without detector response with detector 

 t D U t D U 
lnNe 1.68 0.89 1.32 1.71 0.96 1.77 
S 33.91 15.09 33.67 21.91 9.93 22.74 
X0 0.13 0.55 0.10 1.06 1.20 1.07 
Y0 0.01 0.43 0.01 0.01 0.99 0.19 
cos θ 0.49 0.91 0.79 0.46 0.75 0.49 

 

For the comparison we compare “similar” nuclei pairs: p and He as well as Si and Fe. 
Table 36and Table 37 demonstrate that P-values of statistical tests became very small, 
proving that distributions of the EAS parameters for corresponding nucleolus practically 
coincide. 

Although ingle EAS characteristics of light and heavy nuclei also significantly overlap as 
we can see from Figure 63, we can use more than one parameter, utilizing difference of the 
correlations between parameters. The generalized distance between multidimensional 
distribution and experimental event (so called Mahalonobis distance) is dependent on the 
difference in correlations in alternative samples. In the Table 38, Table 39, Table 40 and  
Table 41Table 40 we post correlation matrices for proton and iron induced samples. Iron 
nuclei interacting high in atmosphere generate electron cascade significantly attenuating 
when reaching 3200 m. We enumerate shape of such “old” cascades by large values of age 
parameter. Therefore, small shower sizes (small Ne), is corresponding to large values of s 
parameter. This anticorrelation is much more pronounced for iron nuclei comparing with 
proton, due to higher probability of interaction of iron nuclei high in the atmosphere and 
faster attenuation  of  iron-induced  cascades.  Again  the  detector  “smeared”  this nuclear          
signature and realistic estimate of correlation difference in proton and iron samples, as we 
can see from Table 38 and Table 39 and Figure 64 becomes significantly smaller when the 
detector response function is taken into account. As we use both parameters and pair-wise 
correlations for multivariate classification, expected misclassification rates will be larger 
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comparing with “pure” cascade simulations. But, nevertheless, the difference in p and Fe 
classes remain significant and that gives hope that these 2 parameters will allow us to 
distinguish at least light and heavy primaries. Very large correlations of primary energy E0 

with shower size Ne didn’t distorted by detector response and we’ll use shower size and age 
for energy estimation. 

Table 38. Correlation matrix for proton sample without detector response 

lnE0 lnNe S X0 Y0 cosθ φ 
 

lnE0 1.00 0.91 -0.16 -0.00 -0.01 -0.23 0.00 
lnNe 0.91 1.00 -0.47 -0.00 -0.01 0.04 0.00 
S -0.16 -0.47 1.00 -0.01 0.01 -0.40 0.02 

X0 -0.00 -0.00 -0.01 1.00 0.02 0.00 -0.01 
Y0 -0.01 -0.01 0.01 0.02 1.00 0.01 0.01 

cosθ -0.23 0.04 -0.40 0.00 0.01 1.00 -0.01 
φ 0.00 0.00 0.02 0.01 0.01 0.00 1.00 

Table 39. Correlation matrix for iron sample without detector response 
 

 
 
lnE0 

lnE0 

1.00 

lnNe 

0.93 

S 

-0.70 

X0 

-0.01 

Y0 

-0.02 

COSθ 

-0.32 

φ 

0.00 
lnNe 0.93 1.00 -0.83 -0.01 -0.01 0.03 0.00 

S -0.70 -0.83 1.00 0.02 0.01 -0.19 0.03 

X0 -0.01 -0.01 0.02 1.00 0.00 0.00 0.01 

Y0 -0.01 -0.01 0.01 0.00 1.00 0.01 0.00 

Cosθ -0.32 0.03 -0.19 0.00 0.01 1.00 -0.02 

φ -0.00 0.00 0.03 0.01 0.00 -0.02 1.00 
 
Table 40. Correlation matrix for proton sample with detector response 
 

 
lnE0 

lnE
0 
1.0
0 

lnN
e 
0.9
0 

S 
-0.06 

X0 
-0.01 

Y0 

-0.01 
cosθ 
-0.24 

φ 
0.00 

lnNe 0.90 1.00 -0.28 -0.02 -0.01 0.05 0.01 
S -0.06 -0.28 1.00 -0.04 -0.04 -0.29 0.02 
X0 -0.01 -0.02 -0.04 1.00 0.01 0.01 0.00 
Y0 -0.01 -0.01 -0.04 0.01 1.00 0.00 0.00 
cosθ -0.24 0.04 -0.29 0.01 0.00 1.00 -0.01 
φ 0.00 0.00 0.02 0.00 0.00 -0.01 1.00 

Table 41. Correlation matrix for iron sample with detector response 
 

 
lnE0 

lnE0 
1.00 

lnN
e 
0.9
2 

S 
-0.38 

X0 
0.0
1 

Y0 
-0.02 

cosθ 
-0.32 

Φ 
-0.00 

lnNe 0.92 1.00 -0.45 -0.01 -0.03 0.03 0.00 
S -0.38 -0.45 1.00 0.05 0.02 -0.17 0.01 
X0 0.01 -0.01 0.05 1.00 -0.01 0.01 0.00 
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Y0 -0.02 -0.02 0.01 -0.01 1.00 0.00 0.01 
cosθ -0.32 0.03 -0.17 0.01 0.00 1.00 -0.01 
φ -0.00 0.00 0.01 0.00 0.01 -0.01 1.00 

 
Figure 63. Shower Age distribution for simulated light and heavy primaries with (right) and 
without (left) incorporating of detector response. 

 
Figure 64. Scatter plot Shower Age versus Shower Size for simulated light and heavy primaries 
with (right) and without (left) incorporating of detector response. 

The most direct estimates of the “discriminative power” of EAS characteristics are 
obtained by the classification of the samples obtained from EAS simulations. Overlapping of 
the 2- dimensional distributions apparent from Figure 64 is enumerated by the 
misclassification rates via Bayesian or neural network classification of EAS initiated from 
the alternative groups of nuclei. Using only EAS electron characteristics, we can’t resolve 
nucleus with similar masses, as p and He, Fe and Si, therefore we joint these nucleus in 
groups naming them “light” and “heavy”, those restricted ourselves to 2-way classification of 
the experimental data. Results on expected classification results posted in the Table 40 and 
Table 41 demonstrate, that although detector smearing significantly enlarges 
misclassification rates, Nevertheless >70% of correct classifications is very encouraging and 
Ne – s pair as measured by MAKET ANI detector provide enough information for the 2-way 
classification. 

We also want to point on good agreement between results obtained by using 2 
completely different methods of classification: Bayesian classification with nonparametric 
estimation of multivariate probability density function and Neural Network classification 
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using stochastic net training methodologies. 
Table 42. Neural classification into two classes using H+He and Si+Fe events without and with 
detector response 
 Without detector response With detector response Light Heavy 
 Light Heavy Light Heavy 
Light 0.925 0.075 0.045 0.720 0.280 
Heavy 0.955  0.240 0.760 

Table 43. Bayesian classification into two classes using H+He and Si+Fe events without and with 
detector response 
 Without detector response With detector response Light Heavy 
 Light Heavy Light Heavy 
Light 0.938 0.062 0.712 0.288 
Heavy 0.043 0.957 0.237 0.763 

8.5  DATA CLASSIFICATION INTO LIGHT AND HEAVY GROUPS OF NUCLEI, 
PURIFICATION OF SELECTED GROUPS OF NUCLEI 

According to results of the previous section we use 2 “training samples” of “light” and 
“heavy” nucleus initiated Ne-s pairs, generated by the CORSIKA code including MAKET- 
ANI response function. Before Neural classification of the MAKET-ANI data we investigate 
expected purity1 and efficiency2   of our data analysis procedures. 

From Table 44 we can see that efficiency of classification, i.e. correct identification of 
nuclei from light and heavy groups is above 70%, the “intermediate” Oxygen nuclei are 
distributed approximately equally among 2 groups. To obtain purity estimates we assume, so 
called “normal” primary composition: 30% H, 24% He, 17% O, 17.5% Si and 11.5% Fe. 
Table 43 demonstrates that purity of light group is above 70%, purity of heavy group is 
below 50% with large contamination of the Oxygen  and light nucleus. 
Table 44. Efficiency of the neural classification of EAS initiated by different primaries into two 
mass groups 
 Light Heavy 
H 0.720 0.280 
He 0.691 0.309 
O 0.453 0.547 
Si 0.352 0.648 
Fe 0.240 0.760 
Table 45. Purity of the classification of different nuclei in light and heavy groups 
 

 H He O Si Fe 
Light 0.407 0.298 0.137 0.111 0.047 

To enlarge purity of the heavy nuclei group we introduce purification procedure (first 
introduced in ISTC A116 project final report, 1999, see also, (Antoni et al., 2003)), enlarging 
purity of each nuclear group on the cost of decreasing the efficiency. 

 
1 purity: fraction of true classified events in an actual number of events assigned to a given class 

  2 efficiency: fraction of true classified events in total number of events of a given class  
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The purification of the selected "light" and "heavy" groups was done by selecting the 
appropriate domain in the entire range of the network output. The feed-forward Neural 
Network (NN) performs a nonlinear mapping of the multidimensional characteristics of the 
EAS to the real number interval [0,1], called the output of the NN. Figure 1 shows the 
network output histogram. The network was trained to shift the "heavy" group to the right 
and the "light" group to the left of the histogram. The 0.5 point of the NN output is the so 
called decision point. The particular class assignments for the two-way classification are the 
subintervals [(0.0,0.5) and (0.5,1.0)] for the "light" and "heavy" class respectively. If  the 
neural network is satisfactorily trained to have generalization capabilities, the output 
distributions for the different classes will overlap at the subinterval boundaries. Therefore, by 
shrinking the subintervals, i.e. moving the interval boundary to the left and right of the 
decision point 0.5, it is possible to remove a large proportion of the misclassified events. Of 
course, simultaneously we loose parts of the true-classified events, i.e., decrease the 
efficiency. 

Thus, instead of one decision point in the middle of the NN output interval, we will have 
two "decision intervals" for accepting "light" and "heavy" nuclei, and a third interval in 
between where we reject the classification. Figure 1 demonstrates this "purification" 
procedure. 

 

Figure 2 shows the results of the purification. The values next to the symbols indicate 
the selected decision interval used for obtaining particular purity-efficiency relation. For 
example, if we select [(0.0,0.3) and (0.7,1.0)] intervals for classification of the "light" and 
"heavy" nuclei, we obtain 96% purity and 56% efficiency for the "light" class; 78% purity 
and 55% efficiency for the "heavy" class. Therefore, we can enhance the purity of the light 
nuclei up to 95% and the purity of the heavy nuclei up to 80%, while still holding the 
efficiency above 50%. The purity and the efficiencies are obtained by classifying 35000 
light (H,He) and 17000 heavy (Si,Fe) control events, which are not used for the training of 
the neural network. 

The high purity for both classes is achieved, since the intermediate nuclei (simulated 
oxygen initiated EAS) were not demonstrated on the plot. More realistic purity and 
efficiency estimates are apparent from the Table 46 and Table 47 (we include also Oxygen 
nuclei). 

As we can see from Table 47 the purity of the light group increases from 70 to 77% and 
for the heavy ones from 46 to 55%, we’ll keep in mind that approximately 20% of heavy 
group are due showers initiated by O nuclei. The purification allows us significantly increase 
the purity of 2 alternative samples and we can, therefore, estimate energy spectra of light and 
heavy groups. Of course, first we describe the energy estimation procedures used. 
Table 46. Efficiency of the neural classification of EAS initiated by different primaries into two 
mass groups (purification intervals [0.,0.3) and (0.7,1.]). 
 

 
H 

Light 
0.567 

Heavy 
0.095 He 0.475 0.135 

O 0.252 0.303 
Si 0.176 0.393 
Fe 0.099 0.561 
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Table 47. Purity of the classification of different nuclei in light and heavy mass groups 
(purification [0.,0.3) and (0.7,1.]). 
 

 H 
 

He 
 

O Si 
 

Fe 
 Light 0.459 0.310 0.115 0.084 0.032 

Heavy 0.115 0.131 0.207 0.278 0.268 
      

                           
 
                    
 
 

8.6   ESTIMATION  OF  THE  PRIMARY  ENERGY  OF  DIFFERENT                            
GROUPS  OF  NUCLEI 

Primary energy of each shower was obtained by neural network estimators separately for 
the light and heavy nuclei induced events, exploiting very large correlation of shower size Ne 

with primary energy and different correlations between primary energy and shower shape in 
light and heavy nuclei groups (see Table 36, Table 37, Table 38, Table 39). In Figure 67 
relative errors of energy estimation for 10 energy intervals are posted. The bias of the energy 
estimation, displayed does not exceed the 5% for the light group (left) in the whole energy 
range except the lowest energies. For the heavy group of nuclei the estimation bias in the 
energy range of 1015 — 1016 eV is not larger than 5%, nevertheless, one can observe some 
overestimation for low and high energy regions. The energy resolution for heavy group of 
nuclei is significantly better ( MSD ~ 20%) as compared to the light group of nuclei ( MSD ~ 
30%) due to the smaller fluctuations of heavy initiated EAS size and shape. Also, accuracy 
of the energy estimation is enhancing with enlarging primary energy. 

By 2 horizontal lines around the 0-line the 5% error corridor is outlined. Error bars are 
correspondent to Mean Square Deviation (MSD). 

Figure 65. Output of the Neural Network 
(NN) trained to distinguish light and 
heavy nuclei. 
 

Figure 66. Purity – Efficiency plots 
obtained by shifting   the NN decision 
boundaries 
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Figure 67. The relative errors of energy estimates fro 10 energy intervals of light and heavy 
groups. 

8.7  ENERGY SPECTRA 

Figure 68 adopted from (Haungs et al., 2003) presents energy spectrum measured by different 
detectors exploiting various experimental techniques and energy reconstruction methods. 

Energy estimation for all experiments was done using Monte Carlo simulations with 
different numerical algorithms. Despite considerable differences in experimental techniques 
and different EAS components used for the energy estimation (showers shape and electron 
size parameters, muons, Cherenkov light) and differences in systematic errors (usually not 
reported in publications)  almost all spectra are in rather good agreement if we assume 
energy estimation accuracy about 20%. Only at energies after the knee feature the spectra 
disagree, probably because of the saturation effects in the scintillators in some experiments. 

 
Figure 68. Summary of the all particle spectra from 18 experiments 

All particle spectra and mean logarithmic mass in many cases presented as an outcome of 
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the EAS experiment aren‘t too informative. We never know which combination of primaries 
constitutes the mean and which groups of primaries are responsible for the knee. The best 
solution will be to separate different groups of nuclei and reconstruct energy spectra to detect 
spectral knees of different nuclei at different positions. This program was partly fulfilled 
with data from the MAKET-ANI experiment. 

After checking for the purity and the efficiency each of the near 1 million showers 
registered by the MAKET-ANI installation in 1999-2002, with shower size greater than 105  , 
was classified according to the techniques described in (Chilingarian et al., 1991), (Antoni et 
al., 2003). The energy of the classified into 2 distinct classes showers was estimated for each 
group separately using again the CORSIKA simulations and neural estimation techniques. In 
Figures 3 we present the obtained energy spectra of the "light" and "heavy" mass groups. 
The spectrum of the "light" group shows a "knee" in the region of 3-4 · 1015   eV. The "knee" 
feature is not observed for the spectrum of the "heavy" component at least till energies of 
1016  eV. The number of «light» and «heavy» nuclei at ~ 1015  eV is approximately equal and 
the number of "heavy" nuclei gets larger at energies greater than the "knee" energy. 

The "purified" spectra shown in Figure 4, demonstrate the lower flux intensities for both 
classes of particles due to the lower efficiency. The "knee" position shifts to lower energies 
as we expect that after purification the proportion of protons is enlarged. In addition, the 
slope of the spectrum (spectral index) of the "purified" light component becomes steeper: 
= −2.63, compared to = −2.54 before purification. Both results are consistent with the 
rigidity dependent acceleration and, consequent fading of the proton flux at high energies. 
Another important feature of the obtained spectra is the very large difference between 
spectral indices before and after the "knee": ∆γ(light) = γ2 − γ1 ~ 0.9. It is well known that the 
same parameter for the all-particle spectra is ∆γ (all − particle)  ~ 0.3, (Haungs et al., 2003). 

Erlykin and Wolfendale, in their simulations, failed to reproduce the actual shape of the 
all-particle spectrum by averaging the proton and nuclei fluxes produced by nearly 50,000 
distant supernovae in our Galaxy (Erlykin et al., 2001). Therefore, they propose that the 
nearby young supernova (< 500 pc and < 110kyr), is responsible for  the approximately 
60% of the detected cosmic ray flux in the vicinity of earth (Erlykin, Wolfendale, 2003). The 
very large difference of the spectral indices before and after the knee of the "light" 
component (~ 0.9) confirms Erlykin and Wolfendales proposal regarding the huge impact of 
the nearest supernova on the cosmic ray flux in the vicinity of earth. It suggests the necessity 
to make detailed calculations of the influence of the nearest supernova on the detected 
cosmic ray fluxes, i.e., to obtain the partial spectra of the nuclei accelerated by the single 
source (for candidate of such source see (Thorsett et al., 2003). 

Figure 71 explicitly demonstrates the dependence of the relative abundances of purified 
light and heavy nuclei on primary energy. Primary composition is light dominant with a trend 
to change to a heavier composition at higher energies. 

In Figure 72 the mean logarithmic mass versus the primary energy is plotted in 
comparisons with other experiments. Overall tendency of the lightening of the cosmic ray 
composition just before the knee, first mentioned in (Chilingarian et al., 1997), as well as 
“havening” after the knee is common feature of all of spectra. Although rather big 
discrepancy between mean values derived from different experiments is apparent, the plots 
of mean logarithmic masses of the KASCADE and MAKET-ANI experiments agree rather 
well. The same neural technique of energy estimation and mass classification was used in 
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both cases (Chilingarian, 1998); KASCADE results are obtained after three way 
classification in contrast to the two way classification performed for MAKET-ANI data. 

        

 

 

In Figure 74 the energy spectra of heavy and light mass groups are posted. The 
coincidence of the energy spectra from the independent data obtained by different zenith 
angle intervals proves both good angular accuracy of MAKET-ANI detector and robustness 
of Neural Network classifier used. In Figure 74 we present the world data on the light mass 
group spectra. Again energy spectra of KASCADE (Vardanyan et al., 1999) and MAKET-
ANI experiments using same Neural Network analysis methods are in good agreement in 
terms of intensities, shape of the spectra and spectral indices. HEGRA specter, obtained with 
completely different experimental methodic, also prove steepening of the light mass group 
spectra and shift of the knee position to the lower values of primary energy comparing with 
all-particle spectra. 
 

 
 

 

 

 

 

 

    

 

Figure 71. Relative abundances of light and 
heavy nuclear groups (purified EAS). 
 

Figure 69. Energy spectra of light and heavy 
nuclei obtained by neural classification and 
energy estimation. EAS characteristics used: 
Shower Size and Shape    (Age). 
 

Figure 70. Energy spectra of light and heavy 
nuclei obtained by neural classification and 
energy estimation. The same as in Figure 69 but 
obtained with purified light and heavy data 
samples. Purification intervals [0.,0.3) and (0.7,1.]. 

Figure 71. Relative abundances of light and 
heavy nuclear groups (purified EAS) 

Figure 72 Mean logarithmic mass dependence 
on primary energy (world data survey) 
(Allesandro, 2001); (Fowler et al., 2001); 
(Roth et al., 2001), (Ulrich et al., 2001); 
(Vardanyan et al., 1999) 
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8.8   SEARCH OF POINT SOURCE OF COSMIC RAYS 

The most exciting problem connected with cosmic rays is the exploration of a particular 
accelerating astrophysical source. Unfortunately, due to the bending in galactic magnetic 
fields, charged particles lose information about parent sites during the long travel and arrive 
to Earth highly isotropic. The Supernovae (SN) explosions are the most popular candidates 
for acceleration sites. The problem is in understanding how the Galactic “ensemble” of 
Supernovae maintain the CR flux in the vicinity of Earth. The fine structure of all-particle 
spectra at the knee suggests hypothesis that one or several recent nearby SN are responsible 
for the observed spectra structures (Erlykin et al., 1997), (Erlykin et al., 1998). Therefore, 
identification of such SN and measuring the flux of particles from its direction will be the 
best proof of the most popular model of hadron acceleration. 

Very  Long Baselene  interferometric measurements of the ~100 KEar old pulsar 
PSR656 + 14 (Brisken et al., 2003) locates the pulsar near the center of the Supernovae 
Remnant (SNR) called Monogem Ring at ~300 parsec (pc) distance from the Sun. It was 
logical to assume that the Monogem Ring, the shell of debris from a supernova explosion, 
was the remnant of the blast that created the pulsar (Thorsett et al., 2003). The position and 
age of the SNR perfectly fits the Single Source (SS) model (Erlykin et al., 2003) and 
following the recommendation in (Thorsett et al., 2003) we “scanned”  the Monogem Ring 
with high energy cosmic rays detected by the MAKET-ANI detector (Chilingarian et al., 
1999A) at Mt Aragats in Armenia (N40°30´, E44°10´). 

We chose high energy particles, not deflected significantly by the Galactic magnetic 
fields. More than 2,000,000 EAS detected by the MAKET-ANI experiment with size greater 
than Ne> 105 (primary energy > 3-4x1014 eV) were selected for the search of the CR point 
source. 

Two-dimensional grids were generated in equatorial coordinates with the bin center 
tuned in the direction of the Monogem Ring center (circle of 9.2°). The best signal was 
obtained with bin center coordinates of (750+14) and bin size (3° x 3°). The selected 

Figure 73. Reconstructed energy spectra from 
size spectra in different energy intervals 

Figure 74. Light group spectra (world survey) 
(Arqueros, et al., 2000), (Vardanyan et al., 1999) 
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direction corresponds to the detector looking at the zenith coordinate of ~ 28°, where 
MAKET-ANI zenith angular accuracy is ~ 1.5°, the azimuth angle estimation accuracy is 
about 3°. Shower cores were collected from an area of 18 x 36 square meters around the 
rectangular central area of the detector.  The shower age parameter was selected in the range 
of 0.3 – 1.7. 

After analyzing more than 2,000,000 events with Ne > 105, we tested different locations 
of the source within the Monogen Ring using different cuts on the shower size. Results are 
summarized in Figure 75 and Figure 76 and in Table 48 and Table 49. From this analysis we 
determined the declination band where the candidate source is located to be (δj = 12.5° - 
15.5°). In the bin distribution of Figure 75 we see a large peak corresponding to the Right 
Ascension (RA) bin of 7.4 – 7.6 hours. 

                    

For more details about signal 
dependence on shower size (particle energy) we calculate the number of events which fall in 
the “signal” bin for different Ne cut values. Table 48 demonstrates that the estimated number 
of signal events (Ns ~ N750+14 – Nbackground) remain approximately constant from Ne > 5·105 up 
to at least Ne = 106 and fade rapidly after. The best significance value was obtained at Ne > 
106.  

We use modified Right Ascension Scan (RAS) method to confirm the existence of the 
CR point source. The background events were taken from the mean value of other RA bins in 
the same declination band (in our case 120 rectangular RA bins centered on 20 different 
declinations).  The significance of the source was calculated by: 

𝜎5,c =
Á3,azÁa
ÄÁ

𝑖 = 1,𝑁¤,3𝑗 = 𝑁vG, 𝑁v�,3               (8.1) 

 
where Ni,j is the number of events in the equatorial coordinates bin , Nα =360 is the range of 
RA; Nδ1 =6 is the first declination , Nδ2 =66 is the last declination, for a total of 20 
declination “bands”. 

We are looking for Single Source candidates in the two-dimensional ∆α x ∆δ (3° x 3°) 

Figure 75. Distribution of number of events in 
each of 120 RA bins for declination band of                  
12.5° – 15.5°       

Figure 76. Signal significance test with full 
equatorial coverage with 2400, 3° x 3° bins;              
Ne > 106
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grid, covering a 360° x 60° equatorial coordinate range with 2400 bins. More than 2 million 
showers detected by the MAKET-ANI detector with sizes starting from Ne >105 were 
distributed among the 2400 angular bins. 

We assume that for j-th declination belt number of events fallen in each of RA bins is 
random variable obey the Gaussian distribution with parameters N(𝑁𝑗,Ä𝑁𝑗 ): we calculated 
the RA bins average (over 120 bins) and used its square root as a measure of the background 
variance for this particular declination. To integrate information from all declination bands 
we perform normalization transformation, equation (8.1), and obtain joint distribution for all 
declination bins. 

As usually in statistical hypothesis testing, the main hypothesis we want to check (named 
H0) consists in the opposition to the hypotheses we are interested, i.e. we will check the 
hypothesis that arrival of the particles detected by the MAKET-ANI detector is isotropic 
(“no-signal” hypothesis) and, therefore, detected enhancement in the “signal bin” is simple 
random fluctuation of the isotropic distribution. As we hope to reveal signal we are interested 
in rejection of H0 with the maximal possible confidence. Detecting large peak we’ll estimate 
very low probability of H0 being true, but, of course, it doesn’t imply that the opposite 
hypothesis is automatically valid. As was mentioned by P.Astone and G.D’Agostini (Astone 
et al., 1999) behind logic of standard hypothesis testing is hidden a revised version of the 
classical proof by contradiction. “In standard dialectics, one assumes a hypothesis to be true, 
then looks for a logical consequence which is manifestly false, in order to reject the 
hypothesis. The ‘slight’ difference introduced in ‘classical’ statistical tests is that the false 
consequence is replaced by an improbable one”. 

If the experimental histogram will not differ significantly from test distribution we’ll 
have no reason to reject H0 and therefore we can’t claim that our results are supporting the 
hypothesis that detected peak is statistical fluctuation only. 

And if we’ll be able reject H0 , we can accept with high level of confidence that detected 
enhancement is due to the additional cosmic rays from the Monogem Ring. 

According to the logic described above we calculate the test statistics applying equation 
1 to the experimentally detected showers and using the equatorial grid covering all directions 
seen by MAKET-ANI detector. As we can see from Figure 14 the shape of the cumulative 
distribution is very close to standard Gaussian distribution N(0,1), the χ2 test value is ~1.5 
per degree of freedom. Only one direction (pointed to the Monogem Ring) from the 2400 
demonstrates significant deviation from N(0,1). Our model will consist in isotropic 
“background” and “signal” mixed with background in one of 2400 equatorial bins. 

From the obtained value of σ = 6.04 for this particular “signal bin” we can calculate 
corresponding probability of obtaining this value under H0 hypothesis to be ~ 2400·10-9·                             
(1-10- 9)2399  ~ 2·.10-6.  The null hypothesis could be true only in 2 cases out of a million, 
therefore  we have good reason to reject the null hypothesis and conclude that the MAKET-
ANI detector detected high energy cosmic rays from the direction of the Monogem Ring. 

We, also, investigated the high-energy events with shower sizes of Ne > 105, 5·105 

8·105,106, 2·106. All the distributions are very close to N(0,1); at a lower cut on the shower 
size (Ne > 105 corresponds to approximately ~5·1014 eV) the significance of the signal is 
minimal, considerably enlarging when we enlarge the shower size. 

To check if our result depends on a particular grid, we randomly selected the declination 
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of the bin center and then calculated the events falling in the 120 RA bins in that band. We 
repeated this procedure 100 times. The distribution of 100 random grids did not deviate from 
a standard Gaussian. Therefore, we conclude that the signal significance did not depend on 
the particular grid used for binning of the events. Another test concerns the influence of the 
chosen bin size on the signal significance. 

From Table 49, we can conclude that the (3° x 3°) bin size provides the best coverage of 
the signal domain. Enlarging the bin size leads to the reduction of the signal due to the 
enlarged fluctuations of “background”, but number of signal events remains approximately 
constant. The best estimate of the number of signal events is the difference between number 
of events in the “signal bin” and the mean number of events in the considered declination 
band. 
Table 48. Dependence of the “signal” on shower Size cut 

Ne Number of events 
in the declination 
band                               
δj  = 12.5°- 15.5° 
 

Mean number of 
events in RA of 3° 
bin (background) 

Number of events in 
the “signal” bin, RA 
of 7.4 – 7.6 hours 

Number of 
“signal” events 
with stat. 
errors 

>105 73382 611 663 52±25 

>5x105 7123 58 84 26±7 

>8x105 3282 26 57 31±5 

>106 2225 18 57 25±4 

>2x106 573 4 13 9±2 
Obviously it is again random variable with variance controlled by the variance of the 

“background”. The statistical errors in the Table 48 and Table 49 illustrate that signal events 
number obtained in “best confidence” bin and equals to 25 is consistent with both enlarging 
of the bins and lowering the shower size cut.  We have not enough strong statistical 
arguments to reject this hypothesis, because 25 value is within approximately one σ intervals 
of considered cut values and enlarged bin sizes. 

Note also very good scaling of mean bin rate with enlarging bin size (Table 49). 
Nevertheless, we didn’t claim that 25 is the best estimate of the signal, for checking the 
statistical hypothesis on the best signal value we need to tune more precisely the shape of the 
signal domain using techniques described in (Chilingarian, 1994). 

Table 49. CR source Localization around the center of the “signal” bin. 
Bin size 
(α x δ) 
 

Number of events  
in the chosen decli-
nation band 

Mean number of 
 events in RA of 3°   
bin (background) 
 

Number of events 
in the “signal”  
bin 
 

Number of 
“signal” 
events with 
stat. errors 
 1 x 1 744 2 11 9±2 

2 x 2 1468 7 22 15±4 
3 x 3 2225 18 43 25±6 
4 x 4 2952 32 48 16±8 
5 x 5 3739 51 71 20±10 

We understand that for proving high energy cosmic ray source we need to do additional 
tests. In 1983 Stamm and Samorski using Kiel surface detector data publish papers 
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(Samorski et al., 1983), (Samorski et al., 1984) claiming detection of signal from direction of 
Syg X-3. The chance probability was estimated to be ~2 from 100,000. Further attempts to 
confirm cosmic ray source by more precise detectors CASA-MIA, HEGRA and others fall to 
find any significant enhancement. Despite that significance of detection of Monogem Ring is 
an order of magnitude higher (chance probability is 2 from million), we continue to performs 
different statistical tests to reveal any of systematic biases. 

One of such tests is random permutation test. We want to check if fixing of the bin 
center, as we have done with Monogem Ring, can introduce bias in the significance test, i.e., 
if it is possible by selecting special directions in equatorial coordinates obtain randomly such 
large excesses in bin count rates. To check for it we perform special statistical test. The test 
consists in random choice of bin center (and corresponding declination band) and further 
count of number of the MAKET-ANI events fallen in the 2400 RA bins of the size (3° x 3°). 
We repeat this procedure 1000 times and for each random trial apply the normalization 
according to equation 1. For generated is such way 1000 rectangular grids we calculate the 
“sigma” values for each of 2400 originated (3° x 3° ) bins and select the bin (direction ) with 
maximal sigma. In Figure 77 we demonstrate scatter plot of the equatorial directions, 
corresponding to the σ ≥ 4, and in Figure 78 appropriate directions correspondent to the σ ≥ 

And if several regions we see 4 σ excess (to be examined separately) only directions 
compatible with the Monagem ring demonstrate significant excess greater than 5σ. 

We also use this “random search” technique for the detailed scanning of the signal 
region. In Figure 79 and Figure 80 we post scatter plots corresponding to the directions 
demonstrated significant excess, σ ≥ 4, 5, but in this studies we restrict the random directions 
by the Monogem Ring vicinity, for detailed investigation of source under question. 

As we can see from Figure 79 and Figure 80, bin centers have circular symmetry with 
center approximately coinciding with direction (750+14), the largest sigma value was obtained 
with equatorial coordinates (749+14.08). Therefore, we conclude that concentration of the 
EAS directions in the bin centered (750+14), see Figure 81 and Figure 82, isn’t methodical 
effect. With chance probability 2 from million us really have additional flux from Monogem 
Ring. 

                          

Figure 77. Random scanning star sky, directions 
to   RA bins demonstrating significant excess,                  
σ > 4. 

Figure 78. Random scanning star sky, directions 
to RA bins demonstrating significant excess,           
σ > 5. 
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Figure 79 .Random scanning Monogem 
Ring, directions to RA bins demonstrating 
significant excess, σ > 4. 

Figure 80. Random scanning Monogem Ring, 
directions to RA bins demonstrating significant 
excess, σ > 5. 
 

Figure 81. CR Source within Monogem 
Ring.(MR as seen in the ROSAT all-sky 
survey in the 0.25-0.75KeV) 

Figure 82. Monogem Ring Coverage, center 
of signal bin 750α+14δ, size 3° x 3°. 



 
131 

CHAPTER 9. 
“SPECTROSCOPY” OF THE CR SOURCE 

Next step of analysis of the CR point source is investigation of mass composition and 
energy spectra of the primaries coming from the direction of Monogem Ring and 
comparisons with the overall isotropic flux of CR of same energies. In the Figure 83 and 
Figure 84 the EAS 2- way classification into light and heavy mass groups is illustrated. In 
Figure 69 a) all 120 RA bins in declination band 12.5 – 15.5 degrees are posted, in Figure 84 
the same is done for 43 events from the “signal” bin. The neural classification again was 
done with Ne – s pair and selection criterion was Ne > 106. No significant difference is 
detected. 

            

 
In Figure 85 and Figure 63 the energy spectra of light and heavy mass groups separately 

for the all declination band and “source” bin are depicted. 
The proportion of heavy nuclei is the same in the both samples and obviously is 

enlarging with selecting showers corresponding to primaries with higher energy. The heavy 
mass group spectra is shifted to the right relative to light mass group, because showers 
initiated by heavy nuclei are attenuated faster in the atmosphere and constant shower size 
will correspond to larger heavy nuclei group energies comparing with light group. 

Information contained in Figure 83 and Figure 84 didn’t allow us to make any definite 
conclusion about particular nuclei mass group coming from direction of SS, i.e. Oxygen 
nuclei as propose Erlykin and Wolfendale (Erlykin et al., 1997). 

Another comparison between declination band means and signal bin means concern 
angular accuracies. In Figure 87 and Figure 88 we post the distribution of the azimuthal and 
zenith accuracies for the declination band 12.5 – 15.5º. In Figure 89, Figure 90 the same  
distributions for only signal bin are posted. We again see no significant difference in band 
and bin distributions. 

Another important problem is transition from polar angular accuracies to the accuracies 
of the equatorial coordinates. 

We denote quatorial coordinates (α,δ), z-axis is directed to North Pole and Althazimuth 
coordinates by (h,A), z-axis is directed to zenith, y-axis is directed to East, x-axis is directed 
to South. 

Figure 83. The 2-way neural classification of 
EAS registered from declinations 12.5 – 15.5º 
 

Figure 84. The 2-way neural classification of 
EAS registered from SS direction: 750α+14δ 
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Relationship between 2 coordinate systems is as   follows 

𝑠𝑖𝑛𝛿 = −𝑐𝑜𝑠𝛷𝑐𝑜𝑠ℎ𝑐𝑜𝑠𝐴 + 𝑠𝑖𝑛𝛷𝑠𝑖𝑛ℎ
𝑐𝑜𝑠𝛿𝑐𝑜𝑠𝛼 = 𝑠𝑖𝑛𝛷𝑐𝑜𝑠ℎ𝑐𝑜𝑠𝐴 + 𝑐𝑜𝑠𝛷𝑠𝑖𝑛ℎ

𝑐𝑜𝑠𝛿𝑠𝑖𝑛𝛼 = 𝑐𝑜𝑠ℎ𝑠𝑖𝑛𝐴
                                     (8.2) 

where Φ �is altitude of Polar Star above the horizon in altazimuth coordinates From  8.2 we 
obtain 

xv
xm
= uÇ¥y¥5ÈmuÇ¥`Å¥5ÈyuÇ¥m

uÇ¥v
xv
x`
= uÇ¥yuÇ¥m¥5È`

uÇ¥v

𝑐𝑜𝑠𝛿 = Ä(𝑠𝑖𝑛𝛷𝑐𝑜𝑠ℎ𝑐𝑜𝑠𝐴 + 𝑐𝑜𝑠𝛷𝑠𝑖𝑛ℎ)� + (𝑐𝑜𝑠ℎ𝑠𝑖𝑛𝐴)�

       (8.3) 

and 
  

xv
x`
= − ¥5È,¤(`¥5ÈyÅuÇ¥y/ÝmuÇ¥`)

¥5È,`
xv
xm
= ¥5È,¤uÇ¥y

¥5È`uÇ¥,m

𝑠𝑖𝑛�𝛼 = G
GÅ(¥5Èyu/Ý`ÅuÇ¥y/Ým/¥5È`),

                                  (8.4) 

Relationship between the small angles ∆h, �∆A in altazimuth system and ∆α, ∆δ �in 
equatorial system is the following 

𝛥𝛼 = x¤
xm
𝛥ℎ + x¤

x`
𝛥𝐴

𝛥𝛿 = xv
xm
𝛥ℎ + xv

x`
𝛥𝐴

                             (8.5) 

For the Monogem Ring co-ordinates seen from the Mt. Aragats and for obtained 

Figure 85. Energy Spectra of light and heavy 
mass groups coming from declinations              
12.5 – 15.5º comparing with SS direction: 
750α+14δ, shower size Ne > 105

 

 

Figure 86. Energy Spectra of light and heavy 
mass groups coming from declinations 12.5 – 
15.5º comparing with SS direction: 750α+14δ, 
shower size Ne > 106
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MAKET- ANI detector accuracies we obtain ∆α =1.3o�, ∆δ= 1.2o, each more than 2 times 
less comparing with size of the bin of the equatorial co-ordinates grid, used for the source 
searching. 

              
      

 

                
 
   
 
 

 
9.1  WHAT WE CAN LEARN FROM SOLAR ACCELERATORS 

Starting from the 70s, with the launch of particle spectrometers, began the continuous 
monitoring of the low and medium energy cosmic rays in space. Time histories of the 
simultaneously detected X-rays, gamma-rays, electrons, and ions of different energy and 
charge, combined with the detection of the developing flares and Coronal Mass Ejections 

Figure 87. Distribution of the azimuthally 
accuracies of Maket-Ani detector, declination band 
12.5 – 15.5º. 
 

Figure 88. Distribution of the zenith 
accuracies of Maket-Ani detector, 
declination band 12.5 – 15.5º. 
 

Figure 89. Distribution of the azimuthally   
accuracies of Maket-Ani detector in signal bin, 
center of signal bin 750α+14δ, size 3° x 3°. 
 

Figure 90. Distribution of the zenith 
accuracies of Maket-Ani detector in signal 
bin, center of signal bin 750α+14δ, size 3° x 
3°. declination band 12.5 – 15.5º. 
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(CME) using coronagraphs, helped to create a comprehensive picture of the major solar 
events, accelerating protons to high energies, so called, Solar Energetic Proton (SEP) events 
(Reames, 1999).  SEP events include also highest energy ions, accompanying protons in 
giving rise to Ground Level Enhancements(GLE), additional fluxes of secondary cosmic 
rays, mostly neutrons and muons,  detected by the world-wide network of the Neutron 
Monitors and Muon Telescopes. “New Instruments on WIND and ACE satellites operating 
during the 23-rd solar cycle, with geometry factors ~100 times larger than those of the 
previous cycle, have yielded unprecedented observations of temporal evolution in 
composition and spectra over a wide range of energies and species” (Tylka et al., 
2001B).Multiwavelength measurements from very sensitive X-ray detectors, high resolution 
imaging coronagraphs and radiotelescopes now reveal the location and characteristics of the 
natural accelerators at the Sun and in the interplanetary space in much more details. 

Impulsive flare events, are believed to accelerate electrons and ions in large structures 
originating in the magnetic reconfiguration regions. After discovery of the above-the-loop- 
top hard X-ray source (Masuda et al., 1994) with the Yohkoh/HXT (Kosugi et al., 1991) it 
became apparent that particles are accelerated by the dynamic electromagnetic forces during 
the reconfiguration of the magnetic fields (Ashwanden et al., 1996). The most probable 
acceleration mechanism is the stochastic acceleration, allowing detectable intensities of 
nonthermal X-ray radiation from locally trapped electrons. Direct hard X-ray detection, as 
well as application of the time-of-flight technique to the electrons traveling from acceleration 
site to the chromosphere reveals that the location of the acceleration region is 5,000 – 35,000 
km above the top of the soft X-ray-bright flare loop (Ashwanden, 2002). 

The natural assumption that positively charged protons and ions will be accelerated with 
the same mechanisms as the electrons is proven by the registration of the lined gamma 
radiation in coherence with hard X-ray radiation. The time sequence of the bremsstrahlung 
radiation peaks produced by accelerated electron beams, interlaced by the nuclear de-
excitation lines produced by proton and ion bombarded chromosphere, clearly demonstrate, 
that ions and electrons are accelerated in the same region and nearly simultaneously. 

The efficiency of the stochastic acceleration of ions via the mutual wave-particle 
interactions depends on the relation between the frequencies of the resonant waves (Alfven 
waves, magnetosonic waves, sound waves) and ion gyrofrequency. Alfven waves, if fast 
enough (~2000 km/sec) can accelerate 20 KeV protons up to GeV energies during time 
scales of 1-10 sec. (Barbosa, 1979), (Miller et al., 1990). 

Gradual events are associated with CME development in corona and in interplanetary 
space. CME driven shock should be fast enough (> 500 km/sec, Reames, 1999) to produce 
SEP events. Shock acceleration is believed to be one of the major mechanisms in the 
Universe for accelerating particles to highest energies. Multiple traversals of shock are 
required for the acceleration of solar ions up to MeV energies. Ambient magnetic turbulence 
is not sufficient for scattering and trapping ions with such energies. Self-generated Alfven 
waves effectively scatter energetic ions, providing their trapping near the chock and, 
therefore, increasing their energy. Maximum attainable energy of accelerated ions is 
proportional to the rate of re- crosses of the shock; this rate in turn is proportional to the 
particle trapping time. “As trapping increases for particles of one rigidity, they are more 
likely to be accelerated to a higher rigidity, where they again stream out and produce 
resonant waves, etc” (Reames, 2000). 
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Numerical calculations and Monte Carlo simulation proves that solar protons could be 
accelerated up to energies of 100 GeV during propagation of CME in middle and high 
corona (Miller et al., 1990). The same authors examining the 1982 June 3 flare, mention that 
protons were accelerated within 16 seconds from 30 MeV to ~ 1GeV. Krucker and Lin, 
(Krucker et al., 2000), based on the data from WIND/SST instrument (Lin et al., 1995), 
conclude that protons at energies up to 6 MeV are injected simultaneously at heights ≤ 10 
R☼. The maximum energy attainable by the shock acceleration depends on shock speed and 
height of 

shock start in the corona. Shock waves as fast as ~1500 km sec-1 starting below ~5R☼ 

can accelerate ions up to 10-30 GeV (Tylka et al., 2001), (Tylka et al., 2001A). Study of the 
association between SEP events and CME (Gopalswamy et al., 2002) proves that CME 
interaction is important for high energy SEP production. For most of the SEP events detected 
in1997-2001 the primary, fast CME overtakes one or more slower CMEs within a 
heliocentric distance 0f ~ 20 R☼. The summary of the present knowledge on particle 
acceleration by various mechanisms at Sun and in the interplanetary space can be 
summarized as follows: 

• Electron Accelerators also accelerate protons and heavier ions, acceleration sites are 
very close in space and time; 

• Particle acceleration is much more effective when several shocks are present in the 
interplanetary space. 

• The “magnetic bottle” structures formed by interacting shocks are major sites for 
reacceleration of particles primarily accelerated by “impulse” and “gradual” 
mechanisms; 

• Maximal attainable energy of particle accelerators is proportional to the particle 
charge; 

• Moving Shock is carrying bulk of particles; 
• Maximal attainable energy of particle is changing from event to event and depends 

on total energy of solar blast, on speed of shock wave, and on time-temporal history 
of the solar flare. (Positions of the Spectral “knees” change from 10 MeV to several 
GeV). 

• For detection of charged particles on the Earth, shock should intercept observers 
magnetic tube; 

• The streaming limit controls the transport of particles; 
The rigidity dependent maximal acceleration energy in solar Energetic Events (SEP) 

occurred during current 23rd solar cycle is apparent from Figure 91. We again, like for 
galactic cosmic rays see very sharp knee for the light nuclei group, namely protons, and no 
knee for heave nuclei group, namely iron. Of course, for much less energies, as Sun and 
CME driven shocks are much less energetic comparing with Supernova explosions and 
correspondent shocks. 

The most famous, so called Bastille day SEP from 14 July 2000, as you can see from 
demonstrates remarkable exactness of the knee positions according to accelerated ion charge: 
proton knee is at ~20 MeV, He knee at ~40 MeV and Carbon knee (Carbon charge is equal 
to 5, remember that temperature at Sun atmosphere isn’t too high to fully strip ions, like at 
Supernova explosion sites) at ~100 MeV (Tylka et al., 2001a). 
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Figure 91. The energy spectra of protons and Fe ions registered by space-born detectors during 
SEP event of 23-rd solar cycle. 
 
9.2  DISCUSSION AND CONCLUSIONS 

Recent unprecedented detailed observations of the nonthermal X-ray radiation from SN 
1006 made by CHANDRA (Long et al., 2003), point very definitely on SNR as a host of the 
hadron accelerators providing energy at least till several units of 1014 eV. Observations of 
the wind synchrotron nebulae around pulsars in vicinity of the SNR center reveals another 
accelerator site e.g. the termination shock at which the relativistic shock from pulsar wind is 
forced to join the slower expansion of the outer nebula (Gaensler, 2003),. Therefore we have 
at least 2 independent accelerators in the SNR working at near, but not coinciding energetic 
scales and differing also at particle production spectra. 

The Single Source model of Erlykin and Wolfenfdale (Erlykin et al., 1997), (Erlykin et 
al., 1998), also get huge support by discovery of the nearest pulsar, located at the space-
temporal distance in remarkable concordance with SS model expectations (Thorsett et al., 
2003). 

In the light of recent discoveries evidence from MAKET-ANI experiment confirms SNR 
and SS models of Cosmic Ray Origin. 

Very sharp knee of the energy specter of the light mass group suggest accepting SS 
hypothesis, because it is highly improbable that Galaxy ensemble of distant Supernovae with 
variety of explosion energies, shock wave speeds, distances and explosion times will provide 
sharp knee feature. Instead we should expect rather smooth depletion of the light mass group 
flux. 

Very sharp knee of light mass group and absence of knee in heavy mass group till at least 
10 PeV also confirm hypothesis of rigidity dependent maximal energy of SNR accelerators. 

The value of this maximal energy is dependent on the total energy of explosion, on 
speed of the shock wave, on density of gas nearby SNR, magnetic fields and its spectra 
distribution and many other, random circumstances connected with supernovae explosion 
and its development history. Therefore, we expect that each supernovae has its own maximal 
energy. Proceeding from the obtained light group spectra and remembering that we have 
contamination of heavier masses in it we can estimate maximal energy of Monogem Ring 
SNR ~1015 eV. 
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MAKET ANI and data allow us to summaries experimental evidence in the following 
statements: 

The energy spectrum of the "heavy" mass group of cosmic rays shows no "knee" in the 
energy interval of 1015 - 1016  eV. 

The estimated energy spectrum of the "light" mass group of nuclei shows a very sharp 
"knee" ∆γ~ 0.9 compared to ∆γ~ 0.3 for the all-particles energy spectra. 

Proceeding from the experimental evidence we conclude that: 
The SNR acceleration model is supported by the MAKET-ANI data on partial energy 

spectra; 
_The nearest SNR, produces a significant portion of the high energy cosmic rays in the 

"knee" region. 
• the mean logarithmic mass is increasing with primary energy. 
• the obtained spectra of light and heavy ions and mass composition coincide well with 

analogical characteristics estimated by the KASCADE experiment using the same 
simulation code and data analysis methodology. 

• the MAKET-ANI experiment detects significant excess of particles from the direction 
of the Monogem Ring with chance fluctuation probability of 2 per million. 

• the maximal energy of surplus particles from the Monogem Ring is estimated to be                          
~ 5·1015 eV. 

• the position of the CR source, 750α+14δ, is fully consistent with the SN shock 
propagation. 

• the energy spectra and mass composition of the particles coming from the “source” 
direction didn’t differ significantly from isotropic background cosmic rays. 

Proceeding from the experimental evidence we can conclude that: 
• Nearest SNR – the Monogem Ring produce significant portion of high energy cosmic 

rays in the knee region; 
• Maximal energy of the SNR is proportional to the particle charge: EMAX ~ZEmax , 

with Emax ~ 1015 eV. 
• Our conclusions are consistent with evidence we get recently about work of the solar 

accelerators. We detect same behavior of the “light” and “heavy” primaries spectra, 
and same rigidity dependent cutoffs in solar particle fluxes, of course, on the much 
less energy scales. Recently propose mechanisms of particle acceleration in the 
SN1006 (Berezhko et al., 2003) is fully consistent with mechanisms of solar particle 
acceleration by CME driven shocks, of course, again, at much less scales. 

• The time history of the cosmic ray intensity (Schlickeiser, 2002), suggest 50% 
enhancement of CR flux integrated over last 400,000 Ears comparing with all 
available time record of 109 Ears. It is also consistent with nearby SS model. 

The data collected by the MAKET-ANI detector in 1997-2002 is the property of the ANI 
collaboration We thank the ANI collaboration members for their fruitful cooperation over 
many years, and A.Haungs, H.Rebel and M.Roth for multiyear cooperation in development 
of multivariate methods of data analysis for KASCADE experiment and for kind permission 
to use Figure xy. This work was supported by Armenian government grant 1465, by the 
ISTC A216 grant, and by the INTAS IA-2000-01 grant.  
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CHAPTER 10. 
SPACE WEATHER FORECAST 

10.1  INTRODUCTION 
Unpredictable bursts of Solar Energetic Particles (SEP), peaking in 11 year cycles 

are one of the major constraints on the operation of space systems and further technological 
utilization of near-Earth space (Tylka et al., 2001B). Some of these bursts produce fluxes of 
high energy particles which can be harmful to satellite electronics, the Space Station, its 
crew and to flights over the poles. In the 1999 report on space weather, the US National 
Security Space Architect finds that during the preceding 20 years about one or two satellites 
per year have suffered either total or partial mission loss due to space weather (SSB, 1999). 
Since our lives depend so heavily on the satellite based technologies, not to mention the 
value of protecting humans in space and in aircraft, it is becoming increasingly important to 
have an accurate and reliable forewarning about the arrival of these dangerous particles, 
so that mitigating action can be taken if necessary. 

The use of large-area detectors which can only be accommodated at ground based 
stations is vital for measuring the low fluxes of high energy particles accelerated in the 
vicinity of the Sun due to Solar Flares (SF) and Coronal Mass Ejections (CME). The 
high energy particles from the most severe events which can cause damage arrive to 
Earth about a half hour earlier than the abundant “killer” medium energy particles, thus 
providing an opportunity to establish an early warning system to alert the client about the 
potential damage to satellites, the Space Station, space personnel, and flights scheduled 
over the poles (Dorman 1999). Taking into account that only very few of a great  number of 
SF and CME produce dangerous ion fluxes, it is not only critical to alert clients about the 
arrival of the most severe radiation storms, but also to minimize the number of false alarms 
against events which are not severe enough to cause damage. We can accomplish both goals 
by  using  detectors on mountain altitudes and low latitudes to detect secondary fluxes 
generated by the few high-energy ions as they enter the Earth’s atmosphere. Because the 
high energy ions are so few in number and because secondary particles are scattered and 
attenuated in the Earth’s atmosphere, large-area  detectors, located at high mountain 
altitudes are necessary to measure them. The information about primary ion type and energy 
is mostly smeared during its successive interactions with atmospheric nuclei, therefore, only 
coherent measurements of all secondary fluxes (neutrons, muons, and electrons), along with 
their correlations, can help to make unambiguous forecasts and estimate the energy spectra 
of the upcoming dangerous flux. 

Lev Dorman has demonstrated in numerous papers that detecting at least two or 
three cosmic ray components at different altitudes and latitudes will make it possible not 
only to reconstruct the solar ion flux outside the Earth’s atmosphere, but also to estimate 
the energy spectra of upcoming solar particle fluxes (Dorman et al., 1993), (Dorman et al., 
1993A). Multidimensional  statistical methods of analysis of the multivariate time series as 
well as timely delivery of the alert are also of utmost importance (Chilingaryan et al., 
1999E). 
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10.2  PARTICLE ACCELERATION AT THE SUN 

Galactic cosmic rays (mostly protons and fully stripped ions) incident on the atmosphere 
create fluxes of secondary particles reaching the Earth. The intensities of these fluxes, as 
measured at different geographical positions by various particle detectors, are characterized 
mostly by geophysical conditions of the site, by the particular phase of solar activity, and by 
the local time of day. Transient solar events also influence the count rates of particle 
monitors.  In this report we will examine short 

term enhancements of count rates in surface detectors (so called, Ground Level Events – 
GLE) correlated with the fluxes of relativistic solar ions incident on the Earth’s atmosphere. 

The first experimental evidence of the GLE was observed in 1942 with Ionization 
Chambers at Cheltenham, Maryland by Scott Forbush (Forbush, 1946). Correlating detected 
GLEs with large SF, Forbush concluded that the cause of the rise in the detector counts 
is the flux of charged particles, accelerated during large disturbances on the Sun and 
reaching Earth. 

Established in the 50’s, the world-wide network of Neutron Monitors (NM) provides 
more detailed data on GLE. Mutual analysis of data on GLE detected by NM located at 
different latitudes leads to the estimation of the energy spectra of the solar proton flux and 
it’s time dependence, (Meyer et al., 1956). 

In the 60’s satellite detectors measured precise proton energy spectra for energies from 
1 MeV up to 500 MeV and helped to establish correlations between increases of particle 
fluxes at 1 AU with abrupt decreases of surface detector count rates, called Forbush 
decreases (Fd), and with sudden commencement of the geomagnetic storms  (Bryant et al., 
1963). 

Starting from the 70’s, with the launch of particle spectrometers, began the continuous 
monitoring of the low and medium energy cosmic rays in space. Time histories of the 
simultaneously detected X- rays, gamma-rays, electrons, and ions of different energy and 
charge, combined with the detection of the developing flares and CME using coronagraphs, 
helped to create a comprehensive picture of the major solar events that include also highest 
energy ions giving rise to GLEs (Reames, 1999). “New Instruments on WIND and ACE 
satellites operating during the 23-rd solar cycle, with geometry factors ~100 times larger 
than those of the previous cycle, have yielded unprecedented observations of temporal 
evolution in composition and spectra over a wide range of energies and species” (Tylka et 
al., 2001B). 

Multiwavelength measurements from very sensitive X-ray detectors, high resolution 
imaging coronagraphs and radiotelescopes now reveal the location and characteristics of 
the natural accelerators at the Sun and in the interplanetary space in much more details. 
Given this background information, two types of solar events which accelerate particles 
– impulsive and gradual - were categorized and described in numerous publications --see, 
for example, Miroshnichenko (Miroshnichenko, 2001). 

  
10.3  THE ARAGATS SPACE ENVIRONMENT CENTER 

The Aragats Space Environmental Center (ASEC, Chilingarian et al., 1999a) consists of 
two high altitude stations on Mt. Aragats in Armenia (Geographic coordinates: 40°30'N, 
44°10'E. Cutoff rigidity: ~7.6 GV, altitude 3200 and 2000 m.). At these stations several 
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monitors  continuously measure the intensity of the cosmic ray fluxes and send data to the 
Internet in real time (see Table 50, and (Chilingarian et al., 2003), for detailed description of 
ASEC monitors). 

After 50 years of operational experience, neutron monitors with threshold values from 
~1 GV (in the Polar Regions) to ~15 GV (Equatorial Regions) continue to be the best 
instrumentation for measuring intensity variations of cosmic rays (Moraal et al., 2000). In 
the 60’s Carmichael developed a neutron monitor with statistical accuracy of 0.1% for 
hourly data in preparation for the Year of Quiet Sun (IQSY), (Carmichael, 1964). This type 
of neutron monitor is usually designated by the name X- NM-64 where X denotes the 
number of counters of the entire monitor. For more details and for a  list of world-wide 
monitors see (Shea et al., 2000). 

Two 18NM-64 neutron monitors are in operation at Nor-Amberd (2000 m. elevation), 
and at Aragats, (3200 m. elevation) research stations respectively called the Nor Amberd 
Neutron Monitor (NANM), and the Aragats Neutron Monitor (ANM). The monitors are 
equipped with interface cards, providing time integration of counts from 1 sec up to 1 
minute. Real-time data from these monitors is  available at URL http://crdlx5.yerphi.am . 

The Solar Neutron Telescope (SNT-1) at the Aragats station is part of a world-wide 
network coordinated by the Solar-Terrestrial Laboratory of the Nagoya University 
(Matsubara et al., 1999), (Tsuchiya et al., 2001). An important advantage of the SNT over 
the NM is its possibility to estimate the energy of detected neutrons. The SNT consists of 
four 1 m2, 60 cm thick scintillation blocks with anti-coincidence shielding consisting of four 
plastic scintillators 5 cm thick and 1 m2 each which veto the near vertical charged flux. 
Incoming neutrons are converted to protons in nuclear  interactions inside the thick 
scintillator target. The energy deposited due to ionization by recoil  protons is measured by 
photomultipliers over the scintillators. The amplitude of the photomultiplier output signals is 
discriminated according to 4 threshold values, approximately corresponding to neutron 
energies of 50, 100, 150 and 200 MeV. The count rate of SNT-1, measuring large amounts 
of neutrons and inclined muons and electrons is sensitive to transient solar events. We use 
short term variations of the SNT count rate along with Aragats and Nor Amberd neutron 
monitors data to analyze the of GLE and Forbush decreases (Chilingarian et al., 2003). Data 
from SNT-1 is available online at URL  http://crdlx5.yerphi.am.  

One of the improvements to the Aragats monitoring facilities includes registration of the 
variations of the muon flux under different angles of incidence. The Nor-Amberd Muon 
Multidirectional Monitor NAMMM, shown in Figure 1 consists of two layers of plastic 
scintillators above and below one of the three sections of the Nor Amberd NM. The lead 
(Pb) filter of the NM absorbs electrons and low energy muons. The threshold energy of the 
detected muons is estimated to be 350  MeV. The NAMMM consists 6 up and 6 down 
scintillators, each having the area of 0.81 m2. The distance between layers is ~ 1 m., and the 
mean angular accuracy is ~ 25°. The data acquisition system of the NAMMM can register 
all coincidences of detector signals from the upper and lower layers, thus, enabling 
measurements of the arrival of the muons from different directions. 

At  the  Aragats  high  altitude  station  two  surface  arrays,  MAKET  (Hovsepyan,  
1998)  and  GAMMA (Garyaka  et  al.,  2002) are  in  operation  for  the  main  purpose  of  
detecting  Extensive  Air  Showers (EAS)  initiated  by  very  high  energy  (E  >5⋅1014   
eV)  ions  and  protons.  The  EAS  installations  are triggered  3-5  times  per  minute.   The  
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plastic  scintillator-photomultipliers  assemblies  symmetrically distributed over the ground 
surface are used to measure charged particle densities and arrival times. The total area of the 
detectors of GAMMA and MAKET installations is about 150 m2.   The spacing between 
detectors varies from several meters to tens of meters. 

In the underground hall originally constructed for the ANI Cosmic Ray experiment 
(Danilova et al., 1992) another one hundred fifty of the same type of detectors are located to 
measure the muon content of the EAS. The 6 m thick concrete blocks plus 7 m soil filter 
the electrons and the low energy muons. Thus, only muons with energies > 5GeV reach 
the detectors. The count rates of the charged components at mountain altitudes are ~ 420 
counts/m2/sec for >10 MeV electrons and ~ 50 counts/m2/sec for >5 GeV muons. These 
high count-rates combined with the large  area  of the electron and muon detectors on Mt. 
Aragats are very attractive for establishing a monitoring facility to investigate the 
correlations between short term variations of electron and muon count rates with the 
enhancing flux of solar ions incident on the Earth’s atmosphere. 

 

 
Figure 92. Nor Amberd Multidirectional Muon Monitor installed around the 8-NM-64 

The count enhancements of the ASEC neutron monitors are integrated over all 
directions. In that case the question arises whether the signal enhancement is due to the 
solar particles or disturbance of the Earth’s magnetic field inducing a temporary decrease of 
the local rigidity threshold--see, for example, (Kudela et al., 2001). The scattering of the 
high energy muons in the atmosphere is negligible, therefore by measuring the incident 
muon direction we can determine the direction of the coming solar and galactic ions. It will 
give us additional evidence on the registration of solar particles. The Aragats 
Multidirectional Muon Monitor (AMMM) consist of 15 m2 scintillation detectors located on 
the top of the ANI concrete calorimeter and 72 m2 array of same type detectors 24 m below. 
Using the coincidence technique we can monitor changing count rates from numerous space  
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directions. Detectors on the top are grouped in 3, while those in the underground hall are 
grouped in 8 to provide significant amount of coincidences. The geometry of the detector 
arrangement will allow us to detect directions from the vertical to 60º declination with 
accuracy of ~ 5º with very good statistics. 

Measuring the intensity deficit of the galactic cosmic rays, it will be possible to 
determine the loss cone direction and perform “screening” of approaching magnetized 
plasma cloud. The world-wide network of the muon monitors covering as much as 
possible incident directions could be used for the early forecasting of the upcoming severe 
geomagnetic storm (Munakata et al., 2000). Along with the Moscow TEMP muon 
telescope (Borog et al., 2001) the AMMM could improve sky coverage when combined with 
present muon detector network. 

The top layer of the AMMM can be used separately as the electron & low energy muon 
monitor with sensitivity of 0.15% for one minute counts. The short scale variations in 
the low energy charged particle fluxes are of major interest for correlation analysis with 
high energy muon and neutron data. The lower layer of the AMMM constitutes a very 
sensitive high energy muon monitor, robust to local atmospheric conditions due to the 
rather high energy threshold. Total count rate of the monitor is approximately ~200,000 
per minute.   Thus, the sensitivity of this monitor reaches record value of ~0.2% for one 
minute count rates, 3 times better compared to the Aragats NM.  Simultaneous detection of 
variations in low energy charged particles, in neutron and high energy muon fluxes by 
ASEC monitors with characteristics given in Table 50, will provide new possibilities for 
investigating the transient solar events and will allow us to classify GLEs according to 
their origin and physical nature. 

Table 50. Parameters of the ASEC Monitors at Mt. Aragats in Armenia. 

Detector Altitud 
e m Surface m2 Threshold(s) 

MeV 
In operation 
since 

Mean count  
rate (min-1) 

NANM (18NM64) 2000 18  1996 2.5 × 104 

ANM  (18NM64) 3200 18  2000 6.2 × 104 

SNT-1 3200 4 50,100,150,200 1998 6.7 × 104* 
NAMMM – test 

operation 2000 5 + 5 350 2002 2.5 × 104** 

AMMM – test 
operation 3200 15 + 72 5000 2002 2  × 103** 

 
*Count rate for the first threshold;  near vertical charged particles are excluded 

**Expected total coincidences rate for the near vertical muon flux 

10.4  CALCULATED ARRIVAL TIMES OF THE RELATIVISTIC SOLAR IONS                  
AT 1 AU AND ENHANCEMENTS REGISTERED BY ASEC MONITORS 

The expected arrival times of the SEP relativistic ions at 1 AU are calculated by the 
technique proposed in (Lockwood et al., 1990), (Fluckiger, 1991) and successfully applied by 
Krucker and Lin (Krucker et al., 2000) for data analysis from the Spectroscopic Survey 
Telescopes on board of WIND satellite (Lin et al., 1995). We apply the same techniques to 
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estimate the relativistic particle arrival at location of the ASEC monitors. We use the arrival 
times and energies of the first ions registered by the Solar Isotope Spectrometer (SIS) on 
board of the ACE satellite (Stone et al., 1998), and protons, registered by GOES satellites 
(GOES, Internet). We assume that the first ions of all energies are accelerated in the one and 
the same spatial region and that interplanetary propagation of the high energy ions is 
essentially scatter-free--see (Kahler, 1994). It was demonstrated in Krucker and Lin (Krucker 
et al., 2000) that the path length of 6 MeV protons to 1AU is very close to the Parker spiral 
length. Therefore, the arrival times of the ions of different energies will be linearly correlated 
with the inverse of their speed.  

We can extrapolate the velocity-time relationship  to calculate the expected arrival times 
of the first relativistic ions that are energetic enough to enter the atmosphere at the Aragats 
geographical location and produce secondary fluxes that reach the ASEC monitors. We 
calculate the threshold values of ion velocities (unique to each ion) for which secondary 
particles will reach the Aragats monitors. Then we check the correctness of our assumptions 
by calculating the correlation coefficients of the linear regressions. The reconstructed 
regression lines for some of the events are shown in Figure 93. All correlations are greater 
than 0.96, thus justifying the validity of the proposed technique to estimate of the arrival 
times of the first ions and protons at the location of the ASEC monitors. 

 
Figure 93. Linear correlation of ion arrival times to 1 AU versus their inverse speed. The 
filled symbols correspond to the expected arrival times of relativistic ions. The proton event is 
shifted down by 3 hours for better visualization of the regression lines. 
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Figure 94. The 15 April 2001 GLE. Estimated arrival times of relativistic ions superimposed on the 
ANM 1 minute time series. Horizontal dashed lines indicate 1, 2 and 3% enhancements relative to 
mean count rate. 

Figure 94 shows the April 15, 2001 GLE, registered by the ANM and expected arrival 
times of the various species of ions calculated as in Figure 93. The solid vertical line 
denotes the onset time of the GLE registered by the high latitude neutron monitors with 
rigidities R < 5 GeV. The vertical dashed line indicates the time of the S2 type radiation 
storm onset. The estimated expected arrival times of different species of ions (Fe, P, S, He, 
and Si) are denoted by the vertical dashed-dotted lines. Each expected arrival time is 
associated with an error bar indicated on the graph. 

The overall pattern of the peaks seems to fit the expected arrival times of the various 
species rather well. For more firm inference on the possibility of “ion spectroscopy” with 
ground based monitors we also need to register fluxes of the muons and electrons in 
correlation with the neutrons, now possible and in process at the ASEC since the summer of 
2002. 

The characteristics of 4 GLE events are summarized in Table 51. Column 5 shows 
the calculated expected arrival time of the particular ion species at the location of the 
ASEC monitors. Column 6 shows the time of the first large peak in the Aragats NM 
time series indicating start of the GLE. Column 7 represents the significance of detected 
peaks in percents (relative enhancement) and in the number of standard deviations (relative 
standard deviation of the ANM, σ ~ 0.7%). For all 4 events the significance of the peak is 
greater than 3σ, thus the probability that the peak is due to random fluctuation only is 
very small. The last column shows the time of onset of the S2 type radiation storm during 
each event represented in Figure 93.The S2 type radiation storm is characterized by 
count rates of >100counts/cm2/sec for >10 MeV protons. According to the NOAA Space 
Weather scales for Solar Radiation Storms (NOAA SW scales), the intensity of the CR flux 
during the S2 type radiation storm is high enough to cause considerable difficulties for 
satellite operation. 
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Table 51. Characteristics of the GLE detected by ACE/SIS, GOES-8 and ASEC detectors 
 

1 
Date and 
Order No. 

of GLE 
 
 

2 
Flare 
Importance 
Category 

 
 

 

3 
First 
Ion 
Type 

 
 
 

 

4 
Correlation 
Coefficient 
of the Linear 
Regression  

5 
Calculated 
Arrival 
Time at 
1AU in UT 

 
 

6 
GLE 
start at 
ASEC, 
in UT 

 
 

7 
Estimates 
of Signifi-
cance% 

 
 

 

8 
I(Ep>10MeV 
>100/cm2.s.srS2 
Onset, UT* 
 
 

 
02-05- X1.1 P 0.97 13:43 ± 13:47 2.3 15:25 
1998    8.2min  (3.2σ)  
56        
06-05- X2.7 He 0.98 8:13 ± 8:08 2.4 9:15 
1998    4.6min  (3.4σ)  
57        
15-04- X14.4 Fe 0.96 13:52 ± 13:53 2.5 14:25 
2001    6.5min  ( 3.6σ)  
60        
26-12- M7.1 He 0.99 5:47 ± 5:52 2.4 6:35 
2001    5.4min  (3.4σ)  
63        

* NOAA Space Weather Scale for Radiation Storms. 

10.5  DISCUSSION 

In all 4 cases of the GLE events described in the previous section, precursors of the S2 
type radiation storms could be found in the one-minute time series of the ANM counts, 
which coincide, within the error bars, with the expected arrival times of the first ions 
accelerated at Sun. From Table 2 we can see that these “early” ions come about 32 to 67 
minutes prior to the onset of the S2 type radiation storm. Of course, the actual 
forecasting will be much more difficult than our post-event analysis. Nevertheless, we 
want to emphasize the feasibility of Space Weather forecasting based on short-term 
enhancements of cosmic ray fluxes at mountain altitude. We also want to emphasize the 
possibility of enhancing the reliability of the prognosis significantly when using data 
from all of the ASEC monitors. We plan to use not only the information about abrupt 
enhancements in cosmic ray fluxes, but also information contained in the correlation matrix 
of the measurements of the neutron, muon and electron fluxes. The significance of the 
information from the different measured components of the particle fluxes and the 
estimation of the forecasting efficiency versus the frequency of false-alarms will be 
analyzed in detail after completing the computer simulations of the various aspects of 
the Aragats alert service. These include particle propagation in the atmosphere, detector 
response sensitivity, and alternative scenarios of alert triggering. 

Here we want to discuss the overall possibilities of forecasting severe radiation 
storms by various experimental techniques. A variety of measurements of solar activity 
starting from radio-waves to gamma-rays can be used as precursors of severe radiation 
storms. Although numerous attempts of modeling the major SEP events have been 
conducted and this activity is getting more and more support (BU News, 2002), existing 
models are mostly phenomenological, because the basic knowledge about the consequence 
of energetic processes on the Sun is still not complete. Formal systems, such as Neural 
Network estimators, cannot provide reliable forecasting due to lack of training examples. 
Among the historically very severe SEPs, only the event from September 1989 was 
measured and documented well enough to be used for the neural network training. 
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Correlations between various characteristics of the solar energetic phenomena and 
spectra of accelerated ions and protons studied on smaller events in the absence of the 
analysis of data from severe events can be misleading when applying them to forecasting of 
the major event. Only the high enough fluxes of the highest energy particles measured by an 
ensemble of surface detectors in combination with data from space borne detectors can 
predict an upcoming severe radiation storm with any degree of reliability. 

Below we present some advantages of using surface detectors at high altitudes and 
low latitudes in consort with the satellite-based sensors for the SEP forecasting 

• Low latitude monitors with high cutoff rigidities have the advantage over high 
latitude monitors, because the enhanced signal-to-noise ratio minimizes the “false-
alarm” rate increasing the possibility of early detection of low fluxes of highest 
energy ions. These ions can go undetected by the high latitude monitors, because 
their signal can be overwhelmed by the large background of galactic cosmic rays of 
lower energies at high latitude locations. 

• The advantage of an alert service which utilizes data from the ground based 
detectors over services which use satellite based detectors only lies in the possibility 
of detecting ions of the highest energies. No instrument exists and nor have been 
envisioned for the flight that can measure high-energy ions in SEP events 
(Reames, 2000). Also it is worth to mention that high intensity radiation have the 
potential of blinding the very system that warns against the SEP events. 

• ASEC monitors provide precise information on short-term variations of 3 species 
of cosmic ray flux (electrons, muons, and neutrons). Simultaneously detected 
abrupt changes of all 3 types of species count rates from the ASEC monitors will 
significantly improve reliability of forecasting. 

• Directional information provided by the ASEC muon monitors will further enhance 
the signal- to-noise ratio and further improve the quality of forecasting. 

• Along with count rates the correlation matrices of all ASEC measuring channels are 
calculated on-line as well, providing additional information on the nature and 
strength of the detected SEP. 

• Measuring CR fluxes at 2 altitudes of 3200 m and 2000 m, gives additional 
information to estimate the spectra of SEP particles at highest energies and - the 
“knee” position of the spectra, most important for calculation of expected radiation 
doze (Reames, 2000). 

The mentioned advantages of the SEP forecasting using surface detectors in addition to 
satellite based instruments, point to the necessity of improving the existing world-wide 
networks for measuring different species of cosmic ray fluxes along with the directional 
information. The detectors of the type presented in Figure 92 distributed along different 
Earth longitudes and latitudes, preferably at high altitudes, connected with space-born 
sensors via interplanetary Internet connections will highly improve existing warning 
services. 

10.6  CONCLUSION 

Our analysis, based on the SEPs unleashing S2 type radiation storms, demonstrates that 
the large area ground-based neutron monitors on Mt. Aragats in Armenia can detect the 
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early arriving highest energy particles released near the sun 30 to 70 minutes in advance of 
the arrival of the lower energy higher flux particles which can cause the damage to the 
satellites and humans in space. We have also designed detectors to measure directional 
information about the arriving radiation, which helps to enhance the signal to noise ratio. 
One of the very attractive features of the Aragats Space Environmental Center is its ideal 
geographical location - latitude and altitude - to maximize the signal to noise ratio. And 
finally, the variety of the types of monitors which allows us to measure all 3 species of 
cosmic radiation (electrons, muons, and neutrons) simultaneously is a very important tool 
to increase the reliability of accurate forecasting and decrease the number of false alarms. 
Information from the ASEC ground based detectors is an essential element to add to the 
information available from Satellites for engineering an accurate and reliable early warning 
forecast of the most severe irruptions on the sun directed towards earth. 

The influence of solar radiation on humans and orbiting technological system has been 
summarized in the Public Documents of the ESA Space Weather Programme Studies as 
follows: Energetic ions from SEP arriving to 1 AU can produce Single Event Effects 
(SEEs) in satellite electronics (single hard errors, single event upsets, latchups, burnouts, 
gate and dielectric ruptures). These effects are normally due to heavy ions, but particles as 
light as protons or neutrons can produce the same effects as heavy ions through nuclear 
reactions with silicon inside the electronics (in the future, due to increasing 
miniaturization, protons may be able to directly induce SEEs). These effects, as they are 
sporadic, are of major concern for space weather. Some of them are permanent, either 
directly (e.g., latchup, burnout) or indirectly (e.g., changes in permanent program memory). 

The radiation effects on human beings are similar to the effects on electronics. Dose 
effects affect all cells, especially those, which are not renewed or at least not rapidly 
renewed. Single energetic particles can also break the DNA chain in the cell nucleus, 
producing chromosome aberrations, translocations and tumor induction. They can induce 
also cell mutation that can have effects on the genetics. Energetic ions and electrons 
locally increase dark currents in detectors. This effect is clearly visible from imagers on 
board Earth or Sun observatories. Energetic ions and electrons also produce atom 
displacements in solar cells, decreasing the output power. Energetic electrons as they 
penetrate inside the spacecraft produce internal charging and electrostatic discharges. The 
effect of discharges can be direct destruction but normally they create electromagnetic 
pulses which produce signals interpreted as false commands by onboard computers 
(Horne, 2001), (Koskinen et al., 2001), (Koskinen, 2001A). 

In 2001 Tylka stated the following: “SEP events are not predictable in any meaningful 
sense. We cannot give a reliable prediction of when such event will occur, nor can say, once 
an event has started, what its characteristics will be, even a few hours in advance” (Tylka et 
al., 2001B). 

Nevertheless, we can optimistically look to the future. More and more of the 
measurements from world-wide network of ground-based neutron monitors are posted on the 
Internet in real time.  Soft X-ray, hard X-ray, and gamma radiation detections by space borne 
detectors also are posted on the Internet in real-time. There are plans to put the real time Sun 
images from EIT and LASCO Instruments of the SOHO satellite on the Internet 
(Berghmans, 2001). The real time information about the CME, its magnitude, and the 
direction in which it is headed from LASCO and EIT satellites will provide additional 
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valuable information for forecasting of the danger from the energetic solar events. The joint 
multidimensional multidetector analysis of all relevant information from space- borne and 
ground-based detectors, including the full complement of large ground based detectors at 
ASEC, will minimize the number of false alarms and will maximize the reliability and 
timeliness of forecasting the arrival of the dangerous SEP. 

ANNEX A. MULTISTART RANDOM SEARCH WITH EARLY                                                       
STOP AS TOOL FOR SELECTION OF SETS OF DIFFERENTLY                                               
EXPRESSED GENES 
Introduction 

The abundance of biologically active molecules (genes) provide basis of cell behavior 
(operation). By regulating amount of genes cell activates it’s functions. Therefore, there exist 
direct correlation between gene abundance and biological function of cell from particular 
tissue. 

The spotted complementary DNA Microarray technique developed at Stanford 
university (Schena et al., 1995) provides opportunity to quantify gene abundance (or relative 
abundance) in cells under investigation. Usually these cells are taken from alternative tissues 
(cancer classification, time series after a given treatment). In such way researchers can 
screen for potential tumor predictors (markers) or drug targets (results of drug intervention). 

Unfortunately both cell variability (intrinsic genomic instability of tumors) and 
measurement instability (bad reproducibility) can obscure actual difference between normal 
and pathological cells (or introduce a fake ones). Very big amount of genes (the 
dimensionality of the “feature space” is reaching tenths of thousands), relatively small 
number of measurements (usually very few dozens), complicated nature of biochemical 
pathways and numerous sources of experimental errors prevent rigorous diagnostic 
inference from microarray data and     found correlations between genes and several 
diseases (usually cancers) still remain ambitious. 

What we need is an integrated system of computation methods dealing with big amounts 
of multidimensional data with high level of statistical variability. Such system with user-
friendly interface will help researchers to reveal hidden dependencies and lead gene analysis 
in a way to discover gene complexes that might be of use for diagnostic purposes or/and as 
therapeutic targets. 

The core elements of such system are best feature selection methods and classification 
algorithms. 

The selection of the feature subset (clustering) representing different concepts increase 
classifier efficiency and reveal nontrivial correlations of measurements with alternative 
classes (tissues), in this way leading path to discovery and prediction for different types of 
cancer, independent of previous biological knowledge. 

The problem of cluster selection is well suited to formulation as an optimization 
problem. Given a set of two alternative classes of N-dimensional input patterns, the task of 
the EA is to find a subset of features in N1 (N1<<N) lower dimension space that maximizes 
optimization criteria. 

The selected gene clusters are evaluated based upon maximal class separation or the 
classification accuracy as an evaluation criterion. 

Unfortunately, two obstacles prevent straightforward implication of well-established 
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statistical techniques for dimensionality reduction. The first one is the rather large amount of 
genes participating in particular pathway (up to 50) and, the second one is the scarceness of 
“training samples”, examples of measurements related to tissues with known diagnose. 

The number of possible gene combinations is enormously large; therefore it is impossible 
to compare all gene subsets. On the other hand the size of training samples are highly 
unbalanced with dimensionality and presence of outliers makes estimates of covariance 
matrix unstable. Consequently all statistical methods based on covariance matrix, and its 
eigenvalues became unreliable. 

To avoid mentioned above difficulties we develop the fast gene selection method 
operated in the feature spaces of not very large dimensionality (in which the covariance 
matrix estimation still make sense). We name this method “evolutionary bootstrap” in 
analogy with famous Efron’s bootstrap method, or Multiple Random Search with Early Stop 
– MRSES method. 

Both probabilistic distances (Mahalonobis and Bhattacharya distances), and 
misclassification probability can be used as optimization criteria. 

The Bayes Risk (probability of misclassification) to our experience is the best quality 
function for multidimensional classification problems. But, very limited number of samples 
makes even the best estimate of Bayes risk – the “one-leave-out-for a-time” estimate discreet 
and usually after few iterations the misclassification rate didn’t changed any more. Therefore 
we plan to use measures, exploiting the differences in estimates of covariance matrix of 
alternative classes. Among these estimates are Mahalanobis and Bhattachariy probabilistic 
distances. 

The explanation of obtained gene cluster (biochemical pathway) remains explicit, and 
easy to identify and analyze and lead to a deeper understanding of the data. This capability is 
of primary importance in microarray data analysis, when the goal is – to isolate group of 
genes responsible for disease. 

A key advantage proposed feature extraction technique is that it can produce gene 
subsets of rather large dimensionality operated with data of significantly lower dimension. In 
such way we overcome both obstacles of “course of dimensionality” and instability of 
covariance matrix and probability density estimates. 

1.  Description of the Multistart Random Search with Early Stop (MRSES) Agorithm 
Random search algorithms are well suited for finding optima in complex combinatorial 

spaces (Zhigljavsky, 1991). Here we propose a modification of the basic random search 
algorithm, the idea of which is to apply a local search procedure multiple times and then use 
all the selected genes for further analysis. As overfitting is an ever-present danger, we 
concentrate on short local searches to be able to examine local maximum regions and to 
prevent convergence to a unique global maximum. The method can be applied for a wide 
variety of parametric and non-parametric quality functions; our choice will be discussed in 
the next section. The basic structure of the multi-start random search method with early 
stopping (MRSES) is outlined by the following sequence of steps: 

Step 0 Randomly select Ncluat genes from Nall, Ncluat « Nall . Evaluate the quality function. 

Step 1 Generate a new evaluation point by swapping one or more randomly selected 
genes between the currently selected set and the rest of the genes. 
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Step 2 Evaluate the quality function for the new combination; if its value has decreased, 
then return to the previous  combination. 

Step 3 Repeat Steps 1 and 2 until the number of iterations  reaches Niter, then save the best  
configuration. 

Step 4 Repeat Steps 0—3 until the number of these cycles  reaches Ncycle. 

Step 5 Post-process the  resultant Ncycle  groups of Nclust genes each in Ncycle manner 
described below. 

The value of the cluster size parameter Nclust   is limited by the number of available 
training samples (microarray slides). The nature of this limitation depends on the particular 
choice of the quality function, but generally both parametric and non-parametric criteria are 
very sensitive to the scarceness of training samples in a high-dimensional feature space. In 
our colon cancer cell line application only 12 samples per tissue are available so in this study 
we used Nclust   = 5 , the largest value that did not cause the quality function estimates to 
become unstable (specifically, the critical element was the determinant of the covariance 
matrix). It is important to note that due to the multiple repetition of the search and the 
post-processing described below, the choice of  Nclust  does not limit the detectable number of  
differentially expressed genes, but rather the depth of the estimated interaction   structure. 

The number of  iterations Niter is crucial to control overfitting; its value should balance 
between being too small to provide enough time for finding truly differentially expressed 
genes and being too large. In the latter case one can expect the same maximum attained in 
many cycles of search because of overfitting. We investigate the role of the choice of in the 
search for differentially expressed genes in the simulation study   below. 

The variability of the algorithm start points for detecting differentially expressed  gene 
clusters  depends on the number of search cycles Ncycle. Therefore it should be as large as 
possible and is limited by CPU power only (we have used Ncycle = 10, 000 ). 

In the post-processing step the local optima are combined to provide a final, global 
solution. We proceed from the heuristic argument that strongly differentially expressed 
genes should appear in many of the local maxima, so that each gene is characterized by the 
frequency of its occurrence in the suboptimal set selected by each of the Ncycle cycles. A 
conservative estimate of the p-value corresponding to the observed frequency can be 
calculated. If a gene is not differentially expressed, then the probability that it will be in the 
selected subset by chance is expected to be equal to Nclust / Nall  (and most likely smaller). As 
the number of repetitions Ncycle 
is large, the final selection frequency of this gene is well approximated  by a Poisson 
distribution with mean NcycleNiter /Nall. Based on this null-distribution the corresponding 
(conservative)  p-values for each gene can be calculated. 

2.  Optimization Criteria 
Most popular parametric measures of the discrepancy between 2 multidimensional samples 
are based on sampling estimate of the 2 samples centroids, covariance matrices and it’s 
determinants. The Mahalonobis distance RM   (Mahalonobis, 1936) and Correlation  distance 
Rcorr  were used for the feature selection for imaging Cherenkov telescopes data analysis 
(Aharonian et al., 1991) 
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            (10.1) 

Their combination so-called Bhatacharia distance RBha = 1/8RM +1 2Rcorr is equal to zero 
if the 2 samples completely overlap and – to infinity if they do not overlap at all. Through the 
Bhatacharia distance one can express the upper bound of the expected misclassification rate: 

UB = 1−exp(−2 RBha) 

The most natural nonparametric measure for measuring discrepancy between two 
multidimensional samples is the classification error probability, which depends on the degree 
of overlapping of alternative multivariate distributions. Of course we have to use for 
classification optimal Bayes decision rule. 

The Nonparametric Bayesian decision rule has the form (Chilingarian, 1989) 

𝐴\ = 𝜂(𝑣, 𝐴, 𝑃S) = argmax5{𝐶5�̂�(𝐴5/𝑣)}, 𝑖 = 1. , . . . , 𝐿,          (10.2) 

where  ci  are the losses connected with  𝐴\  decision,  �̂�(𝐴5/𝑣) is the nonparametric estimate 
of the a posteriori density, connected with conditional ones by the Bayes theorem: 

𝑅ú5( = ∫{𝑝(𝑣/𝑤1) − 𝑝(𝑣/𝑤2)} ln '((/�G)'((/��)
𝑑𝑣         (10.3) 

Finally, substituting the posteriori densities by the conditional ones we get the Bayesian 
decision rule in the form 

𝑅8È/ = −∫𝑝(𝑣/𝑤5) ln𝑝(𝑣/𝑤5)𝑑𝑣           (10.4) 

To estimate conditional densities, we use Parzen kernel (Devroye et al., 1985), (Parzen, 
1962) and K Nearest Neighbors (KNN) methods (Lofsgaarden et al, 1966), (Schena et al., 
1995) with automatic adaptation of the method parameter (kernel width - for Parzen estimate, 
and number of neighbors - for KNN estimate) (Chilingarian et al., 1984). Several probability 
density estimates corresponding to different values of parameters are calculated 
simultaneously. Then  the obtained sequence is ordered and the median of this sequence is 
chosen as a final estimate. 

Depending on the intrinsic probability density in the vicinity of point v, where the density is 
estimated, due to stabilizing properties of the median, each time the best method parameter will 
be chosen (Efron, 1981). 

The Parzen kernel probability density is estimated by:  
(2π)d /2 hd 
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          (10.5) 

where d is the feature space dimensionality, Mi  is the number of events in the i-th TS, rj is the 
distance from experimental event v to the j-th event of the TS in the Mahalanobis metric 
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𝑟c� = (𝑣 − 𝑢c)� ∑ (𝑣 − 𝑢c)zG
5 ,                            (10.6) 

where Σi is the sampling covariance matrix of the class to which uj belongs, ω j are the event 
weights, h is the kernel width (parameter controlling the degree of the "smoothness" of an 
estimate). 

The K nearest neighbors estimate takes the form: 

�̂�(𝑣/𝐴5) =
PzG

63�õ(()
,                        (10.7) 

where Vk (v) is the volume of a d-dimensional hypersphere containing the k –1 nearest 
neighbors to the experimental event v, 

𝑉P(𝑣) = 𝑉�|∑5|G/�𝑟P�, 𝑉� =
ìô/,

�(�/�ÅG)
,                            (10.8) 

where rk is the distance to the k-th nearest neighbor of v, Γ(.) is the gamma function. Σi is 
the determinant of the covariance matrix of the class to which the k-th neighbor belongs. 

The Bayes risk takes the form: 
where 

𝑅V� = 𝐸{𝜃[𝜂(𝑣, 𝐴, 𝑃)]} = ∫𝜃𝑝(𝑣) 𝑑𝑣,                            (10.9) 

0, for correct classification, 1, otherwise  

𝜃[𝜂(𝑣, 𝐴, 𝑃)] = �0, for	correct	classification1, other	wise             (10.10) 

Where the mathematical expectation is taken over the whole d-dimensional feature space V. 
In other words the Bayes error is a measure of the overlapping of alternative distributions in the 
feature space V, e.g. the expected proportion of the "incorrect" classification. Since we do not 
know to which class experimental vectors belong, we obtain an estimate of RB via the TS: 

𝑅V� = 𝐸 �
1
𝑀��
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5FG
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               (10.11) 

i.e. we classify the ui ,i = 1, MTS and check the correctness of the classification over the index 
of the class t j , j = 1, L . The expectation is taken over all possible samples of volume MTS . 

However, as numerous investigations have shown (Szabo et al., 2002), this estimate is 
systematically biased and hence, a one-leave-out-for-a-time estimate is preferable: 

𝑅Vi =
1
𝑀��

>𝜃Ñ𝜂(𝑢5, 𝐴, 𝑃S(5))Ô
6��
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               (10.12) 
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where  𝐴, 𝑃S(5)   is a TS with a removed ith element,  which  is classified and then "returned" 
to the sample. This estimate is unbiased and has an essentially smaller m.s. deviation 
compared with other estimators (Snappin et al., 1984). The advantage of Re the feature space 
has a high dimensionality. 
is especially notable when Bayes error, due to it’s discrete character, couldn’t be used 
effectively for small sample size case (usual for microarray applications). Therefore we use 
more complicated continuous measures, as Divergence (Rdiv ) and Entropy (REnt ) , also 
based on the nonparametric estimates of the multivariate probability density function 
(Chilingaryan et al., 2002) 

𝑅ú5( = ∫{𝑝(𝑣/𝑤1) − 𝑝(𝑣/𝑤2)} ln '((/�G)'((/��)
𝑑𝑣               (10.13) 

 

𝑅8È/ = −∫𝑝(𝑣/𝑤5) ln𝑝(𝑣/𝑤5)𝑑𝑣                (10.14) 

3.  Tuning of the MRSES on computer simulations 

The main goal of the simulation study is to investigate under controlled conditions 
whether the multivariate search method really increases the power of detection of 
differentially expressed genes. We also want to assess the effect of changing the parameters 
of the proposed MRSES algorithm, with special attention to Niter . 

For testing of the new method first we simulate cDNA microarray data where the extent 
of differential expression of each gene is known. The simulation program CORRSIM 
developed in Utah univ. Cancer Institute (Szabo et al., 2002), allows to over or under express 
several selected genes and take into account both biological variability and instrumental 
errors. 

In our studies we select particular number of genes (Kalmykov.et al., 1997), randomly 
assign to them expression level in coherent way (simulation of biochemical pathway). 

Then we “forget” about superimposed structure and data enter MRSES program for 
multivariate analysis. Of course we perform also standard data preprocessing (normal, log- 
normal or rank-based transformations) and one-dimensional 2-samle statistical tests  
(Student, Kolmogorov-Smirnov and Mann-Whitney). 

The MRSES algorithm was investigated and compared with traditional methods. In this 
study we were interested in understanding of the ways of integration of independent local 
random searches in global selection of the “interesting” gene combinations.  Applying 
different stopping rules to random search algorithm (changing number of iterations Niter ), we 
force algorithm to converge to different local maximum (selecting different correlated genes) 
or finally reach one global maximum. 

We simulated data sets and applied the search algorithm using  the parameters Nclust = 5, 
Ncycle = 10, 000 and several values of Niter . In Figure 95 we compare some characteristics of 
the algorithm; the left side corresponds to Niter = 1000 and the right side to Niter = 100, 000 . 

The top graphs display the histogram of the values of the «last good iteration» - the 
number of iterations after which no successful steps was encountered (that is when the final 
set was found). It is clear that 1000 iterations are not sufficient to reach the global maximum, 
on the other hand 100,000 iterations are more than enough for the random search to 
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converge. The middle pictures illustrate this in another way. In the case of early stopping the 
distribution of the Mahalanobis distances (the algorithm's quality function) corresponding to 
the suboptimal sets is unimodal with high variability. Therefore, we can conclude that the 
algorithm explored many different local maxima with a variety of corresponding values  of  
the quality function. When the iterations are continued to reach 100,000, the distribution of 
the Mahalanobis distances achieved in the suboptimal sets becomes very discrete. In half 
of the cases the search reaches the global maximum on a unique combination of genes, one 
of which was not preset as differentially expressed. So we do find the global maximum, but 
miss many local maxima and the corresponding differentially expressed genes from the 
predefined cluster. When we stop early at the 1000-th iteration none of the 10,000 cycles 
finds the global maximum, but a variety of genes are selected. This is demonstrated in the 
bottom pictures, where the frequencies of selection for the 20 genes belonging to the 
differentially expressed cluster are plotted. In our experiment, 17 from 20 genes pass the 
selection criteria (to have the frequency of occurrence higher than 0.5%) with the early stop, 
while only 10 genes are correctly selected when we force algorithm to attain the global   
maximum. 

To further investigate the dependence of the power of the algorithm on the stopping time, 
we estimated the ROC curves corresponding to values of Niter  ranging from 100 to 10,000 
based on 10 independently simulated data sets (other parameters were held constant: Nclust = 5, 
Ncycle = 10000). For each search we obtained a list of genes with associated frequencies of 
occurrence in the selected subset and compiled a final selection of differentially expressed 
genes by applying cutoff values ranging from 0.1% to 10%. Based on the null hypotheses of 
no differential expression, for each of these sets we estimated the type  I error as the 
proportion among all non-differentially expressed genes of those genes that were included in 
the selection and the type II error as the proportion among the genes in the differentially 
expressed cluster that were not included in the final selection. The resulting ROC curves are 
shown in Figure 96. As a reference a point representing the type I error and the power of the 
marginal t-test with 5% significance level is also plotted. From Figure 96 we can see that the 
choice of does indeed have a large influence on the performance of the algorithm and long 
searches are inferior to early stopping. Of course there is a limit on how early one should 
stop, because very short searches do not have a chance to reach any local maxima. Under our 
setup Niter = 500 gives the best performance. 
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Figure 95. Comparison of gene selection with early and late stopping of the multi-start random 
search algorithm. First row: histogram of the value of the 'last best iteration' in the Ncycleie 

searches. Second row: histogram of the estimated Mahalanobis distances for the Ncycleie selected 
sets. Third row: frequency of inclusion of the differentially expressed genes (1-20) in one of the 
selected sets. One simulated data set. 
 

 
Figure 96. ROC curves for various values of Nner controlling the stopping time. Based on 10 
simulated data sets; the error bars show the standard errors of the point estimates. 
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4.  Application for medical diagnostics: two colon cancer cell lines 
We selected two commonly studied colon cancer cell lines for our analyses. HT29 cells 

represent advanced, highly aggressive colon tumors. They contain mutations in both the 
APC gene and p53 gene, two tumor suppressor genes that frequently mutate during colon 
tumorigenesis. As another cell type, we selected HCT116 cells. This cell line models less 
aggressive colon tumors and harbors functional p53 and APC. However, they show a 
deficiency of those genetic systems that are responsible for the repair of mismatched regions 
of DNA. To generate the data, three samples of each mRNA (1 /xg each) were labeled by 
production of first-strand cDNA in the presence of Cy3-dCTP (green) or Cy5-dCTP (red). 
Cy-3 was used to label HCT116 cells while Cy-5 was used for HT29 cells. Each comparison 
set was hybridized against two microarray slides (facing each other) containing 4608 
minimally redundant cDNA's spotted in duplicate. As a quality control tool, six Drosophila 
genes are always added to the Cy-5 sample, so in a red vs. green comparison they have to be 
differentially expressed by design. This experiment resulted in a total of twelve 
measurements on each channels for each gene on the microarrays. While there is a nested 
dependence structure of the samples, we used them as independent replicates. From a sep- 
arate experiment we also have data with ten HCT116 samples hybridized with Cy-5, that is 
on the red channel. The normal score adjustment (3.3) was   used. 

We have performed two comparisons: HCT116 vs. HT29 and HCT116 (green) vs. 
HCT116 (red), the latter after the exclusion of the six Drosophila control genes. Based on 
our simulation studies and the available sample size we chose 97 we compare the two search 
procedures. The left column corresponds to the comparison of the different cell lines, while 
the right column to the comparison of the same cell line on different channels. The 
histogram of the last best iteration is very similar for both cases   and looks like the one 
obtained in our simulation studies where the global maximum was not obtained. Thus in 
both cases due to the early stopping the algorithm keeps exploring local maxima. However 
the distribution of the estimated Mahalanobis distance at these local maxima is very 
different: when different cell lines were compared the Mahalanobis distance R4ah based on 
the locally optimal subsets tended to be much larger, that is the separation 
of the two tissues was considerably better. 

We also compared the two lists of genes ordered by decreasing frequency of 
occurrence in the selected subset. The histogram of the first 115 genes on the list is shown 
in Figure 98 (white and black columns); the right tails of the histograms are very close to 
each other.  As an additional reference we included the histogram generated by the HCT116 
(green) vs. 

HCT116 (red) comparison with the control genes included (grey columns). It is clear 
that some of the genes in the HCT116/HT29 comparison (black) are selected more often 
than expected under the null hypothesis of no difference between the two tissues (white). 
In the no-difference comparison (without control genes) there are just two genes that are 
selected in more than 3% of the cycles; if the control genes are included, this number 
increases to six and 4 out of the top 5 genes (# 1,2,3 and 5) are actually the Drosophila   
controls. 

Based on the histograms we decided to use 1% as the cutoff for selecting differentially 
expressed genes, thus selecting 59 cDNA spots. We have compared this list with the top 59 
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genes selected by values of the t-statistic. Almost half of these genes (25 exactly) appear in 
both lists. However a striking feature of the selection using multivariate random search is 
its ability to include correlated genes. Some of the genes have several spots that 
correspond to them, thus their expression level at various spots is known to be correlated. 
Among the 59 genes selected by the multivariate method 13 have two, and 2 have three 
spots related to them. Four of these genes have all their replicates in the selected set 
including one of the genes with three replicates. By comparison, in the list based on the 
marginal t-statistic 17 genes have two or more replicates on the slide, and only one of 
them has all of its replicates selected. While one would hope to be able to find all the 
replicates of a gene, in practice localized errors can make it infeasible. Part of the problem 
is the unreliability of the gene identifications in our dataset, so some cDNA's labeled the 
same might actually   correspond to different genes. Despite the caveat, this finding is 
encouraging and is in line with what we have seen in the simulation studies: genes with less 
pronounced differential expression can be selected if they are correlated with more strongly 
differentially expressed genes. 
 

 
Figure 97. Comparison of the search procedure used for same and different tissues. First row: 
histogram of the value of the 'last best iteration' in the  Ncycleie  searches. Second row: Histogram 
of the estimated Mahalanobis distances for the Ncycleie suboptimal sets. HCT - HT  data. 
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Figure 98. Comparison of the frequency of inclusion in the selected locally optimal set in the 
search procedure used for same tissue with (gray) or without (white) the six control Drosophila 
genes on the two channels and for different tissues (black). HCT - HT  data. 

ANNEX B. NOTATIONS 

N (µ, σ) Gaussian Population 

V Event (Measurement, Feature) Space 

A Basic States Space 
Λ Space of all FFNN Model 

G Space of possible FFNN Architectures 

W Space of FFNN weigts (Couplings, Connections) 
Oλ Trained FFNN Model, Net Output 

d Dimensionality 

L Number of classes 

M Number of experimental events 
vi Vector of measured variables 

ui Vector of simulated events 

(A, P) Stochastic mechanism which generates experimental data 
(A, P-) "Controlled" stochastic mechanism, simulation program 

PA Prior measure 

C - 
AA 

Losses (cost) measure 

p (v / Ai ) Conditional probability density function 
pˆ(v / Ai ) Estimate of conditional density 

pˆ(Ai / v) Posterior density 
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