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1. Phenomenological Description of Multigle Proaduct ion

Significant  increase  of infurmat ion abjout mo U ipan b e
final states produced in particie collivsicens Wil higberr aned
bigtesy coergivs make it udrgent  to decelop none Srandit somid
mathods of analysis of experimental data. By means  of  Lhe
pavameters uf Lhe detected jarticle, o i e T b Many
Joint arnd conditional probabilit; Jdistribaationg which aeer migect
more: intormative than the averaged choractor o des 1.

Zinee there is slill G2y ok !huﬁry 1t S Y R
interactions, a phenomencliogioal approact o the  altea hyghe
enerdy cullisions is widely used. One of the first  threorel ical
genevralizations of the multiple product ion processe. 16 Chee BHO
scaling, which predicts that al sufficiently high energie.  th

distribution over hadron multiplicity P' by the, Lualing
]
Pn(n) - W2z), 2 - n/m o, (1.3

where Pn is the probability to uvbserve n hadrons in bthe P
state, (M is the mean multiplicitly at a given enerqgy.

Since the Puisson distribution

n -
Po= oy e S ot
1]

Jescribes the badron multiplicity badly, theve was jeopre o

uce: the negative binomial distribution and  the: Buosa: |



distribution, which supposes the presence of K independent

random sources with the same intensity:

p;k>cn> = ¥ (2) = L S Y (1.3)
Carruthers has shown [2] that Wz(z) descr ibes the ISR and SPS
data well.

Though the description of the nature of random sources mests
difficuities (they are associated with the gquark-gluon plasma
Jensity oscillations), recently, using the Bose-Einstein
correlations, they succeeded in estimating the size of hadron
sources [3]. The source size in pp collisions did not change
when the energy changed from 0.9 to 2.2Te\! in the c.m.s. (as
was to be expected, if the KNO scaling was satisfied} and was
in a linear dependence with the charged density in the pseudo-

rapidity bin (AnsAp):

= 0.59 * 0.05 (An/Ap) . (1.4)

Fermti

Recently the particles distribution in the rapidity windows
became the object of great attention. targe fluctuations in
some rapidity bins, which were found in experiments at
colliders and in cosmic-ray physics [4], could not find any
description in the frame of earlier suggested phenomenvlogical
mechanisms. Conclusions were drawh that the large fluctuations
in the vapidity distributions reflect non-trivial fluctuations
uf the hadronic matter during collisions.

The instrument of investigation of non-triviel vrapidivy
correlations till now is the study of the dependence of
nnrm?lized moments of the rapidity distributions on the size of
the rapidity bin [5]. Several modifications of the moments

m=thod are suggested:



absramd q=1,2...,

C —

q

£, = «n-co D s I, (1.5}
” - q

Cq = (n{n-1)...{n-g+1 ) 7 " ,

where q is the order of the normalized moments and ¢ > means

averaging over the rapidity bins.

Let us write down a more detailed expression of a normalized

moment :
M
_ q q
C(M)y=1/MEn /iy , (1.6)
q . m M
m=1
where M is the numbar of equal rapidity bins - 6y=A/H; A

usually is the interval (-2 - 2), i.e. 6y=4/M; n. is the number
of hadrons falling into the m-th bin, (nm) is the average bin
population of events with multiplicity N, M is the number of
bins.

Let us consider, foilowing {6], how the normalized moments
betave under assumption of absence 6f correlation and under
very stvong correlation. Consider the uniform bins
distribution: nm=N/M. m=i,...M. It is easily seen that for all
qa, Fq(H)=1. And if all the hadrons have fallen into the same
bin, nm=N for some m=r and nm=0 for the remaining m, then

q-1
c(Mm)=m"n ’ (1.7)
q

i.e. at an extremal fluctuation the moments significantliy
increase with the number of bins. That is why the moment:s:
method sometimes is called a magnifier for exposure ol

non-uniformities. Rewrite (1.7) in somewhat different form  ane



také its logarithm:
. q__l
Cq(ﬂ) = (A/én) »
(1.8)

lan(M) = —(q—jl)lnéM + (g-1)InA.

The moments logarithkm is in a linear dependence with the bin
size logarithm. The random quantity with such behaviour is
called an intermittent one and the factor of the logarithm of
the bin size is called index of intermittence. The intermittent
random quantity in a sense is the dpposite or .the Gaussian one,
for which a considerable deviation from the average values is
very impraobabie. h

1f even after averaging over all the events (events with
both the same and different multiplicity can be averaged), the

scaling relation

1n<cq(n)) = —Aq1n6"-+ gq 1nA (1.9)

is satisfied, then the physical process invest igated is
characterized by intermittence.

It is o rious that the experimental growth of normalized
moments, vrevealed in a wide energy range of hadronic and
leptoni:- .ollisions, is a new main characteristic of multiple
rroduction, which emphasizes the role of very-short-range

coarrelations against the usual short-range ones responsible for

‘resonance production.

The Ffirst phenomenological mechanism describing the
behaviour of the 'factorial moments was the hypothesis of
existence of two types of sources: laminary, with a régular
signal distribution, and turbulent, which is characterized by

chaotic bursts [7]. When colliding, the parton, passing through



an interacting hadronic matter enters high-density regions
(narrow channels), emits many particles, also passes through
low-density regions {wide channels) and uniformly emits few
particles. At such an interpretation, the main attention is
drawn to the very complicated trajectory of the partons
wandering in the hadronic matter [8]. But we believe, a much
more natural way of interpretation of the anomalous behaviour
of normalized moments is based on the hierarchy
(self-similarity) of the processes of multiple production énd
on the closely connected with the self-similarity notion of
fractal (multifractal ) dimensionality.

Relations like {1.9) are a consequence of self-similarity in
the structure studied, and give ground to carry out a
dimensionality analysis. & dimensionality analysis means
revealing in a 3N-dimensional momentum space (or in a
one—-dimensional rapidity space) lower-dimensional regions where
the events are grouped.

At present there are available a number simulations of
quar k—gluon cascade development in hadronic matter [?,10]. The
updating aof the LUND program based on the realization of the
idea Sf parton-hadron duality [11,12] led to vrealization of the
fact that the unusual behaviour of normalized moments is due to
the QCD cascade [12,13].

Before going on to the fractal analysis formalism, we shall
show how a fractal (non-integer ) dimensionality can arise in a
simplest cascade process of decay of the massive particle m
[14] (see Fig.1).

On each self-similarity step of the cascade the mass
decreases by a factor of 11/a, o222 (a=2, if final-state
particles arc pruduced with zero kinetic energy). On the r-th

stép ol th« sascade we have 2r particles with mass (l/a)rnt. The



unification of masses of the particles obtained as a result of
cascade, constitute the metric set .

Let us show that at the beginning of the cascade process the
topological dimension dTa=1 and then, de(l.

The topological dimension is equal to 3, if it is possible
to enter the finite open coverage of the multiplicity £3+1 into
any finite open coverage of the set », and if there exists such
finite open coverages of % into which it is possible to enter
the finite open coverages of the multiplicity (3J+2. The
coverage multiplicity is the maximum number of coverage
elements containing common points of the set # [15]. For our
example, the possibility of entering coverages of factor 2 into
any open coverage of ¥ is a necessary condition for the
dimension to be equal to unity. It is possible for 1a - it is
enough to take somewhat shorter intervals of coverage and they
also will intersect, i.e. the multiplicity is 2; and for 1b it
.is impossible, since the intersecting intervals cannot be

embedded in the non-intersecting ones.
2. The Technigue of Dimensionality analysis

The cascade processes which are fregquent in the high-energy
physics, are due to some characteristic dimensionality. But, in
contrast toc the ideal self-similar cascades or geometric
figures (e.g., Serpinski’®s carpet), in real physical systems
there are possible deviations from self-similarity and, first
of all, they contain not a single, but several characteristic
scales connected with some dimensionality. The main idea of the
Jimensionality analysis is revealing these dimensionalities and
trying to relate them with the dynamic mechanisms responsiblée

for their production.



A strong mathematical definition of the topological
dimensionality was made by the efforts of Freche, Hausdorff and
Poincare in the beginning of the century. The capacity
definitions of dimensioiality were given later, which were then

generalized to a non-integer case:

d_ = -lim In N(1) 7 In (1) , (2.1)
F
140

where N(1) is the coverage of the set under investigation by
open l-balls.

It can be shown that dFSdT. and if dF<dT. then the object is
called a fractal one, i.e. having a fractional dimensionality.
Note that capacity has a purely geometric nature.

A set of events registered in an experiment fill the
momentum space very non-uniformly, reflecting via its structure
the dynamic mechanisms of particle production. That is why the
events distribution over N(1) bins will be highly non-uniform
and this non-uniformity with a physical meaning is not
reflected by the capacity at all. Rt l

To generalize the notion of capacity, it is -necessary to
choose a universal measure fit to characterize the momentum
space structure non-uniformities. The subject of measure was
discussed in the problem of description of the dyvnamic systems
turning to chaos [16]. For such systems, due to the necessity
for transition from time averages to spatial ones, invariance
of measure is required. There is no such problem for
experimental data analysis, since the object (a population of
points) can be considered as a given one and the tfme is not an
essential characteristic. Besides, the object is a compact:
for any open coverage there exists a finite sﬁbcoverage.

LLet us consider the l-coverage of the compact. In each bir



determine Ni(l) probability (cellular ) measure (mass):

Pi(l)=Jdp(x) , (2.2)
A

where A is the volume of a bin with 1 size, p(x) is probability
density function determined in the whole space by means of some
non—parametric method, by the experimental data or by
realization of the Monte Carlo simulation program [17].

From the point of view of the resoclution of experimental
installations, it is important to transit to the cellular

measure pi(l), though 1 should not be arbitrarily small, so

that the integral {dp(x) becomes senseless.

The basic approach to the dimensionality analysis lies in
characterization of physical systems by the invariant
probability measure singularities [18]. To do this, let |us

determine the scaling of the moments of the random quantity

pi(l) of order g at scale 1:

g N(1) +1 #(a)
Cq(l)E <pi(1)) = Zpi(l) ~.1 » ¥a) = qdq+1 » (2.3)

i=1

where dq are the Renyi dimensions (generalized dimensions)
determined for m(q{w. At g=-1, the relation (2.3) determines
the capacity dimension dF:dO’ at g=0 the informat ion
dimensionality dl’ and at g=1 the correlation dimension d2.

If the fractal is uniform (geometric), then

10



p,. s p = 1/N1 N1 = N(1), and

o+ d
a*tl qq+1

(1/N1) N1 ~ 1 » hence we obtain for all qg: (2.4)

lan ~ —do In ,

i.e. For uniform fractals the Renyi dimensions of any order are
the same and are equal to the fractal cdimension, and the
scaling of the g-th order momentum is characterized by the
index qdo, which linearly increases with the momentum  order.
Aand if the fractal is non-uniform, then ali d‘i are different
(ancmalous scaling) and the deviation from the dimensionality

can be characterized by:

R (0.5
dq ad, {

Thus, as in case of normalized moments (1.5%), the Renyi
dimensions can serve as quantitative power indices of
non—uniformity of both the rapidity distribution and the hadron
distribution in the momentum space. .

The Renyi dimensions are defined as a slope connecting some
values of {li} with the corresponding values of {Cq(li)} in a
double-logarithmic scale.

But the direct application of the formula (2.3) to Renyi
dimension calculation is rather time-consuming and what is
more, there are no instructions regarding the choice of the
bux-size sequence {li}' The proposed algorithms based on
nearest neighbour information (NN-algorithms) are much more:
fficient than the box—counting algorithms and they intrvoduc:. .
atural  scale - the sample-averaged distance to NN,
8=1,2...M, M is the total number of events in the studied

{ sample «°



ST RT b

Using the ergodic theorem one can make a replacement:

N(1) M

g+l
Zpi(l) ~ E-i'vgl (2.6)

i1 J=1

-~

where p. is the probability to find the point of the studied
]

set not in the box of size ] but inside the hyperball of radius

1, centered at some other point of the studied set and 01 is

the total number of g~tuples within these balls.

For the Ek sequence the scaling relation takes the form:
_Ha)
t:nl3 ~ R, (2.7)
k

For g=1 (correlation dimension) the number of q--tuples
equals simply to the number of the sample events within l-balls
and the left-hand side of (2.7) is equivalent to the mean
number of the sample points being inside a hyperball with a
radius egual to the average distance to the K-th neighbour,

i.e. equals to the number k, so:

k~R . (z.8)

dence, the modified algorithm defines d as a slope of the

k-dependence of R, in a double-logarithmic scale.

k
Fig.2 shows such a dependence used to define the correlation

dimension of the Serpinski carpet. The dimension was determined
by the least square method through 25 points: In{of the number
of fhe nearest neighbour 1,3...42)~In(the sample-averaged
distance to the nearest neighbour ;. Of course, the number of

events must be large enough (there i a definitec relation

12



between the space dimensionality and the wminimum number .of
events, by the use of which it is possible tc draw consistent
conclusions ).

By the ¢{qg) dependence it is possible to classify different
events of multiple production [21}, as a multifractal object
can be considered as an interwouven family of uniform fractals,
cach obeying the scaling law with index dg.

Note that the dimensionalities of dg are not in any way
connected with the regions where singularities of the
probability measure arise, i.e. it is impossible to recover the
spatial structure of the multifractal suppeort by the dq
spectrum. That is why we believe the 1local dimensionality
introduced in Ref.[22] may be useful in separating the momentum
space regions where considerable fluctuations of the invariant
probability measure are obserwved.

Description of the algorithm for the local and global
correlation dimension calculation is presented in the next
section, and what is more, an interesting relation of the
fractal dimensions to the Tintrinsic dimension”, a notion
developed in the frame of the mathematical theory of pattern

recognition, is also shown.

13



3. KNN Estimation of Probability Density.

lLLocal and Global Dimensionality.

Consider KNN estimation of probability density [23] which is

a development of the well-known histogram method :

k
P = FO D) (s-1)
ki
where Uk(xi) is the wvolume of a d-dimensional hypersphere
containing the k nearest to xi representatives of the set

{(sample ) studied:

d nd/2
Vi) = VR P Ve T rrarE (3.2)

where Rk is the distance to the k~th nearest neighbour of xi.
MNz)- is gamma function. From (3.1) and (3.2) we can readily

obtain (see ref.[24]):

, 1 ' -1/d
\xi) = InK + In M Udpk(xi)] . (3.3)

In R pr

k
Fq.(3.3) cannot be solved relative to d, since the estimate of
p(xi). as one can see from (3.1), depends on K. Therefore, let
us average Rk over the whole sample, according to the
distribution function :

d. k-1

_ d-1 (CR") d
fk’x(R) =CcdR T exp(-CR ), (3.4)

where C = Mp(x)ud.

14.



In the approximation of small R and large M we’ll obtain the

following equations :

~ 1 i N
1n Gk,d + In Rk =3 1n K + const, (3.5)
6 4= kM) rCk + 1/d),

where ﬁk is the sample-averaged distance to the K-th nearest
neighbour and "const" is independent of k.

The difference of this scaling equation from the previous
ones obtained by a completely different approach consists in
the so-called iterative addition Gk,d' which is close to zero
for all k and d. Therefore, we solve this equation iteratively,
first assuming Gk,d=0’ and then, having obtained di’ we

and determine the value of di+ . We’ll stop the

calculate G 1

'k’di
iterations when d practically is no longer changed.
Such verification of d estimates is connected with averaging
»f the correlation integral. The correlation integral, the
wumber of the sample points inside a hyperball of a fixed
-adius, is a random variable beloqgfng to a binomial
distribution with parameter A(x) (the probability for the
sample point to fall within this hyperball). Notice, our
3s£imate is a global estimate, i.e. the whole sample is
characterized by one number, though local differences are
possible. From this point of view, local dimensionality is much
movre interesting, since we’ll be able to detect local
inhomogeneities corresponding to wvarious dynamic mechanisms.
Consider eq.(3.3) again. aApart from sample averaging,
there is also one more way to get a linear equation for
dimension determination. For this, one must choose { kj} series
such, that the density estimates are very close and hence, the

dependence of pk(x) on k can be ignored. Following these chosen

15



values { k ) and ‘the corresponding »{ .R -(u,)}. one can
J .
determlne the estlmate of the local d1men510n at a point x.

4,'The.SimuIation Study

The Reny1 d1mens1on was determ1ned for the samples generated
by the algorlthm for the Serp1nsk1 carpet (Flg 3), Henon map,
“and for samples obtalned by dlfferent random number qenerators.

' Experlments were carrled out to, ;nvestlgate the method

sens1t1v1ty to the choice - of_ parameters which include: the

,samplegs1ze,_sequsnce_of the nearest neighbours, the order of

-the ‘Renyi dimensions, hand to .study the possibilities of

separation of 'the' regions wfth anomalous structure. The

1mportant for many appllcatlons aspect of the quality of the
_quas1 random number' generators mas also cons;dered; For
comparlson 'of the- un;formlty of- ther: population of an
N d1men51ona1 »spacel:byt “random” numbers, there were used
QUas1—random ﬁmeefs'4 Lvaieves;.'which uni formly fill an
©ON- d1mens10nal cube [“5] |
vll Flg .4 presents the Renyl d1mens1ons of order. from 1 to 15 -
the functlon #(q)- The.~three_ random—number generators being
compared are: RNDM,'which was widely used in the past decade;

-RANECU.-a generator lately recommended by - F.James [26] and

NDRIK, a matrlx -gpnerator -designed - in " the. Yerevan Physics -

Instltute [27]

Sets of two—d1mens1ona1 vandom quant1t1es dlstrlbuted in a

square of s1de I were cons1dered.‘ The slopes - connecting the

values of the moments of the 1nvariant .probability measure:

(2.3) were calculated through 70 points for distances equal to

the average distance to the nearest. neighbours with numbers

v

~T



from & to 75, the orders of diﬁensions-being phosen from 1 to
15, the size of samples ﬁas lpooland 5000 ' L

For a strictly periodical:étrdcture of . LP;sjeves,..all the
2eny1 dimensions are the samé: @la)= qd the - rahdom number

generators show some dev1at10n from unlformlty, which is due to

limitedness of the sample. The matrlx. generator reveals -

somewhat better results:

Fig.5 presents Rehyi'dimensions'calculated~ using differentf.f

Rk—sequences (ﬁk sequence consists of"gn avérége distances from
1 to5, 1 to25,..., 1.to 75 nearest neighboqrs).' The smaller
the range over which the‘diménSion'is determined. tHe more the
random fluctuations and the more the difference befween the
function ¢(g) and the line'y=qd0, whith.Corresponds to complete
uniformity. _ _ "

"Fig.&6 shows the histogram‘qf the loCél‘diménsions Of‘a.mixéd
sample consisting of a mixture of 500"e0entsj-0f Serpinski’s
carpet (d2~1.9) and 500 events of Henon’s map .(d2~1.2.. Two
peaks are clearly seen;'which correspond. to two modes v(the
sorrelation dimensionality is binned). - .

Unimodal dlStleUthH“_COTYeSpOﬂdlng to data 'of the same
type are shown in Figs.7 and 8. . . -

A quasi-periodical drstr;butioh_lﬁas' used to “scan” the
fractal 3upp0rtruith the purpose fb"determine the anomalous
areas: the dimensionality uﬁs calcuiatéd in the ﬁodes of the
LP-sieve (fig.9). Fig.ldipresehts the'rééulté of scanniﬁg of a
square of side 0.9, wherertﬁe Serpinski_barpet'is situated. For
the sieve points fallen into the empty areas of the carpet the
fractal dimension turned aut to be 52;2;«which a11ows_.them to
be reliably separated. '7‘_ | o -
The gquasi-random sequence itself 3130. furned out to be

ﬁon—unlform on the boundaries of its support shouwn in Flg 11.

17
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The program code is written in Fortran-77 for VAX- and
IBM-type computers (operational system VM). Some subroutine
from KNN multivariate density estimation package [17] are used
for NN distances calculations and Q-tuples count. The
calculations have been carried out on a EC-1046 computer in the

computation center of the Yerevan Physics Institute.
CONCLUSION

To summarize, we have investigated a new method of
multiparticle data handling, allowing to deal with the large
amount of particles produced in modern colliders.

We have demonstrated how the Renyi dimensions can be used as
a quantitative measure to outline possible inhomogeneities in a
3N-dimensional moment um space or in the rapidity
( pseudorapidity ) distributions.

We introduce a simple technique for Renyi dimensions
calculation. A universal scale, a sample-averaged distance to
NN, was offered. A qg-tuples counting algorithm provides an
evaluation of Renyi dimensions in a sizable range of q-values.
KNN algorithm for correlation dimension calculation is much
more suitable and precise compared to box-counting algorithms.

. By the local dimension distribution obtained on fractal
support we can judge about different mechanisms which took part
in the creation of the given set.

The application of these ideas to the analysis of
multiparticle production dynamics, requires intensive Monte
Carlo simulations and detailed quantitative comparisons of
simulated and experimental data.

I express my sinéere gratitude to S.G.Matinyan for helpful

discussions.
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Fig.1

Fig.2

Fig.3

Fig.4

Fig.6

FIGURE CAPTIONS

Self-similar cascade decay of a-parficle‘with mass M. On
the r-th step of the cascade development there are 2
particlés with mass m/a’ .

The straight line slope determination, by which the
correlation dimensionality of the Serpinski carpet is
determined.

The 5th generation of the Serpinski’s carpet,

5000 points.

The ¢(q) curve.

For a completely uniform set of guasi-random numbers in
square of side 1, all the Renyi dimensions are the same,
the pseudo-random numbers somewhat deviate from
uniformity.

Comparison of the degree of non—uniforﬁity of population
of a Gnit square by two-dimensional vandom numbers (the
RNDM generator ). The narrower the ﬁk sequence for
determination of the Renyi dimension, the higher the
non-uniformity.

Histogram of the local dimensionality of a mixed sample

-~ a Serpinski carpet & a Henon map.

Figs.7,8 Distributions (normalized histograms) of the 1local

Fig.?

dimensionalities determined for samples of
two-dimensional quasi- and pseudo-random numbers.

A planar tP-sieve, 1024 nodes.

Fig.10 The results of scanning of a Serpinski carpet: + denote

points where the local dimension is >2.2.

Fig.11 The results of scanning of a planar tP-sieve over the

boundaries of its support; + denote points where the

local dimension is >2.2.
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