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distribution, which supposes the presence of К independent

random sources with the same intensity:

/If \ |f |f_ 1 _ If-y

P *' <n> = *(z) = к z e /(k-l)! (1.3)
Ti ' К

Carruthers has shown [2] that Ф (Z) describes the ISR and SPS

data well.

Though the description of the nature of random sources meets

difficulties (they are associated with the quark-gluon plasma

density oscillations), recently, using the Bose-Einstein

correlations, they succeeded in estimating the size of hadron

sources [3]. The source size in pp collisions did not change

when the energy changed from 0.9 to 2.2TeV in the c.m.s. (as

was to be expected, if the KNO scaling was satisfied) and was

in a linear dependence with the charged density in the pseudo-

rapidity bin (Ап/Ат)):

R = 0.59 ± 0.05 (Дп/Дт)) . (1.4)
Fermi *

Recently the particles distribution in the rapidity windows

became the object of great attention. Large fluctuations in

some rapidity bins, which were found in experiments at

colliders and in cosmic-ray physics [4], could not find any

description in the frame of earlier suggested phenomenological

mechanisms. Conclusions were drawn that the large fluctuations

in the rapidity distributions reflect non-trivial fluctuations

uf i"he hadronic matter during collisions.

1
 he instrument of investigation of non-triviel rapidity

correlations till now is the study of the dependence of

'«jrmalized momenta of the rapidity distributions on the size of

the rapidity bin [5]. Several modifications of the moments

method are suggested:



С = <n
4
>/<n>

q
 , q = 1,2...,

q

С = <(n-<n>)
4
> / <n>

4
, (1-5)

q

С = <n(n-l )...(n-q+l )> / <n>
4
 ,

q

where q is the order of the normalized moments and < > means

averaging over the rapidity bins.

Let us write down a more detailed expression of a normalized

moment:

M

С ( M) = 1/M Г п
Ч
 / <п>

Я
 , (1.6)

го—1

where M is the numbsr of equal rapidity bins - 6 =A/M; Д

usually is the interval (-2 - 2), i.e. 6 =4/M; n is the number

у m

of hadrons falling into the m-th bin, <n > is the average bin
ID

population of events with multiplicity N, M is the number of

bina.

Let us consider, following [6], how the normalized moments

behave under assumption of absence of correlation and under

very strong correlation. Consider the uniform bins
distribution: n =N/M, m=i,...M. It is easily seen that for all

m
q, F (M)=l. And if all the hadrons have fallen into the same

q
bin, n =N for some m=r and n =0 for the remaining m, then

m m

q-i
c

q
( м) = м . ( i . 7)

i.e. at an extremal fluctuation the moments significant !>•

increase with the number of bins. That is why tht moment;;

method sometimes is called a magnifier for exposure oi

non-uniformities. Rewritu (1.7) in ь-omewhat different form aw



take i t s logarithm:
q-i

Cq<M) =

(1.8)

lnC (M) = -(q-l)ln<5 + (q- l ) lnA.q M

The moments logarithm is in a linear dependence with the bin

size logarithm. The random quantity with such behaviour is

called an intermittent one and the factor of the logarithm of

the bin size is called index of intermittence. The intermittent

random quantity in a sense is the opposite of.the Gaussian one,

for which a considerable deviation from the average values is

very improbable.

If even after averaging over all the events (events with

both the same and different multiplicity can be averaged), the

scaling relation

ln<C (M)> = -A. ln£ + g lnA (1.9)
q q M q

is satisfied, then the physical process investigated is

characterized by intermittence.

It is nl /ious that the experimental growth of normalized

moments, revualed in a wide energy range of hadronic and

leptoni- collisions, is a new main characteristic of multiple

r-roduct ion, which emphasizes the role of very-short-range

correlations against the usual short-range ones responsible for

'resonance production.

The first phenomenological mechanism describing the

behaviour of the factorial moments was the hypothesis of

existence of two types of sources: 1aminary, with a regular

signal distribution, and turbulent, which is characterized by

chaotic bursts [7]. When colliding, the parton, passing, through



an interacting hadronic matter enters high-density regions

(narrow channels), emits many particles, also passes through

low-density regions (wide channels) and uniformly emits few

particles. At such an interpretation, the main attention is

drawn to the very complicated trajectory of the partons

wandering in the hadronic matter [8]. But we believe, a much

more natural way of interpretation of the anomalous behaviour

of normalized moments is based on the hierarchy

(self-similarity) of the processes of multiple production and

on the closely connected with the self-similarity notion of

fractal (multifractal ) dimensionality.

Relations like (1.9) are a consequence of self-similarity in

the structure studied, and give ground to carry out a

dimensionality analysis. A dimensionality analysis means

revealing in a 3N-dimensional momentum space (or in a

one-dimensi.onal rapidity space) lower-dimensional regions where

the events are grouped.

At present there are available a number simulations of

quark-gluon cascade development in hadronic matter [9,10]. The

updating of the LUND program based on the realization of the

idea of parton-hadron duality [11,12] led to realization of the

fact that the unusual behaviour of normalized moments is due to

the QCD cascade [12,13].

Before going on to the fractal analysis formalism, we shall

show how a fractal (non-integer) dimensionality can arise in a

simplest cascade process of decay of the massive particle Ш

[14] (see Fig.l).

On each self-similarity step of the cascade the mass

decreases by a factor of l/а, c£2 (ct=2, if final-state

particles arc produced with zero kinetic energy). On the r-th

step of th.-; cascade we have 2 particles with mass (I/a) Ю. The



unification of masses of the particles obtained as a result of

cascade, constitute the metric set x.

Let us show that at the beginning of the cascade process the

topological dimension d x=l and then, d x<l.

The topological dimension is equal to 3, if it is possible

to enter the finite open coverage of the multiplicity <3+l into

any finite open coverage of the set x, and if there exists such

finite open coverages of к into which it is possible to enter

the finite open coverages of the multiplicity <3+2. The

coverage multiplicity is the maximum number of coverage

elements containing common points of the set x [15] . For our

example, the possibility of entering coverages of factor 2 into

any open coverage of x is a necessary condition for the

dimension to be equal to unity. It is possible for la - it is

enough to take somewhat shorter intervals of coverage and they

also will intersect, i.e. the multiplicity is 2; and for lb it

is impossible, since the intersecting intervals cannot be

embedded in the non-intersect ing ones.

2. The Technique of Dimensionality Analysis

The cascade processes which are frequent in the high-energy

physics, are due to some characteristic dimensionality. But, in

contrast to the ideal self-similar cascades or geometric

figures (e.g., Serpinski's carpet), in real physical systems

there are possible deviations from self-similarity and, first

of all, they contain not a single, but several characteristic

scales connected with some dimensionality. The main idea of the

dimensionality analysis is revea-ling these dimensionalities and

trying to relate them with the dynamic mechanisms responsible

for their production.



A strong mathematical definition of the topological

dimensionality was made by the efforts of Freche, Hausdorff and

Poincare in the beginning of the century. The capacity

definitions of dimensionality were given later, which were then

generalized to a non-integer case:

d = -lim In N(l) / In (1) , (2.1)
1 0

where N( 1 ) is the coverage of the set under investigation by

open 1-balls.

It can be shown that d_£d_, and if d <d , then the object is

called a fractal one, i.e. having a fractional dimensionality.

Note that capacity has a purely geometric nature.

A set of events registered in an experiment fill the

momentum space very non-uniformly, reflecting via its structure

the dynamic mechanisms of particle production. That is why the

events distribution over N(1 ) bins will be highly non-uniform

and this non-uniformity with a physical meaning is not

reflected by the capacity at all. /J

To generalize the notion of capacity, it is necessary to

choose a universal measure fit to characterize the momentum

space structure non-uniformities. The subject of measure was

discussed in the problem of description of the dynamic systems

turning to chaos [16]. For such systems, due to the necessity

for transition from time averages to spatial ones, invariance

of measure is required. There is no such problem for

experimental data analysis, since the object (a population of

points) can be considered as a given one and the time is not an

essential characteristic. Besides, the object is a compact:

for any open coverage there exists a finite subcoverage.

Let us consider the 1-coverage of the compact. In each bir



determine Nj( 1 ) probability (cellular) measure (mass):

P.(l) = |dp(x) , (2.2)

Л

where Л is the volume of a bin with 1 size, p(x ) is probability

density function determined in the whole space by means of some

non-parametric method, by the experimental data or by

realization of the Monte Carlo simulation program [17].

From the point of view of the resolution of experimental

installations, it is important to transit to the cellular

measure p.(l), though 1 should not be arbitrarily small, so

that the integral fdp( x ) becomes senseless.t
The basic approach to the dimensionality analysis lies in

characterization of physical systems by the invariant

probability measure singularities [18]. To do this, let us

determine the scaling of the moments of the random quantity

P.(l) of order q at scale 1:

c
q
(i)= <

P
.(i) > = ) Р £ ( 1 ) ~ i . # q ) = qdq+l , (2.3)

where d are the Renyi dimensions (generalized dimensions)
q

determined for oo<q<oo. At q=-l, the relation (2.3) determines

the capacity dimension d =d , at q-O the information

dimensionality d , and at q=l the correlation dimension d .

If the fractal is uniform (geometric), then

1O



p. = p = 1/Nj N
x
 = N(l), and

q+1 qd

( 1/N ) N ~ 1 , hence we obtain for all q: (2.4)

lnM. ~ -d In ,

i.e. for uniform fractals the Renyi dimensions of any order are

the same and are equal to the fractal dimension, and the

scaling of the q-th order momentum is characterised by the

index qd , which linearly increases with the momentum ordt.r .

And if the fractal is non-uniform, then all d are different

(anomalous scaling) and the deviation from the dimensional i ly

can be characterized by:

Thus, as in case of normalized moments (I.S), the Ronyi

dimensions can serve as quantitative- power indices of

non-uniformity of both the rapidity distribution and the hadron

distribution in the momentum space.

The Renyi dimensions are defined as a slope connecting some

values of {1.} with the corresponding values of {C (1. )} in a
i q i

double-logarithmic scale.

But the direct application of the formula (2.3) to Renyi

dimension calculation is rather time-consuming and what ib

more, there are no instructions regarding the choice of thu

box-size sequence {1.}. The proposed algorithms based iiii

nearest neighbour information (NN-algorithms) are much mm •

ifficient than the box-counting algorithms and they introdm,». >

latural scale - the sample-aver aged distance to NN,

л=1 ,2...М, И ib the total number uf events in t.h»: studit.-ij • •

( ьатр1e &'

U



Using the ergodic theorem one can make a replacement:

« i )
 q + 1

 м

/
 p
 ~

 Q
lV ' /Ji 1 (2.6)

i-1 j-l

where p is the probability to find the point of the studied
j

set not in the box of size 1 but inside the hyperball of radius

1, centered at some other point of the studied set and Q. is

the total number of q-tuples within these balls.

For the R sequence the scaling relation takes the form:
К

Q ~ R
t
 (2.7)

R.

For q=l (correlation dimension) the number of q-tuples

equals simply to the number of the sample events within 1-balls

and the left-hand side of (2.7) is equivalent to the mean

number of the sample points being inside a hyperball with a

radius equal to the average distance to the K-th neighbour,

i.e. equals to the number k, so:

к ~ R . (2.8)
К

Hence, the modified algorithm defines d
o
as a alope of the

k-dependence of R in a double-logarithmic scale.

Fig.2 shows such a dependence used to define the correlation

dimension of the Serpinski carpet. The dimension was determined

by the least square method through 25 points: ln(of the number

of the nearest neighbour 1,3...47)~ln(the sample-averaged

distance to the nearest neighbour). Of course, the number of

events must be large enough (there ib a definite relation



between the space dimensionality and the minimum number of

events, by the use of which it is possible to draw consistent

conclusions ).

By the ф( q) dependence it is possible to classify different

events of multiple production [21], as a multifractal object

can be considered as an interwoven family of uniform fractals,

each obeying the scaling law with index d .

Note that the dimensionalities of d are not in any way

connected with the regions where singularities of the

probability measure arise, i.e. it is impossible to recover the

spatial structure of the multifractal support by the d

Я

spectrum. That is why we believe the local dimensionality

introduced in Ref.[22] may be useful in separating the momentum

spacu regions where considerable fluctuations of the invariant

probability measure are observed.

Description of the algorithm for the local and global

correlation dimension calculation is presented in the next

section, and what is more, an interesting relation of the

fractal dimensions to the "intrinsic dimension", a notion

developed in the frame of the mathematical theory of pattern

recognition, is also uhown.
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3. KNN Estimation of Probability Density.

Local and Global Dimensionality.

Consider KNN estimation of probability density [23] which is

a development of the well-known histogram method :

(зл
>

where V.(x.) is the volume of a d-dimensional hypersphere
К X

containing the к nearest to x. representatives of the set

(sample) studied:

d/2

V
)

V
 v

 -
 (3

-
2)

where R is the distance to the k-th nearest neighbour of x.,
К 1

Г(z ) - is gamma function. From (3.1) and (3.2) we can readily

obtain (see ref.[24]):

In R k <x.) = i In К + In [M V J P I / X J ) ]
 1 / d - ( 3 . 3 )

Гц.(3.3) cannot be solved relative to d, since the estimate of

p(x.), as one can see from (3.1), depends on K. Therefore, let

us average R, over the whole sample, according to the

к
distribution function :

,d
v
k-l

- С d R
d 1 ( C

p
( k

}

}
 exp(-CR

d
). (3.4)

where С = Мр(х)^>.
d

14.



In the approximation of small R and large M we'll obtain the

following equations :

In 6. + In R = j In К + const, (3.5)
К j Ci К Q

G. = K
1 / d

r( k )/Г( k + l/d),
к , и

where R, is the sample-averaged distance to the K-th nearest

neighbour and "const" is independent of k.

The difference of this scaling equation from the previous

ones obtained by a completely different approach consists in

the so-called iterative addition 6 , which is close to zero
К f Q

for all k and d. Therefore, we solve this equation iteratively,

first assuming G, .=0, and then, having obtained d., we
k,d l

calculate S and determine the value of d. . We'll stop the
К|U, 1+1

iterations when d practically is no longer changed.

Such verification of d estimates is connected with averaging

jf the correlation integral. The correlation integral, the

lumber of the sample points inside a hyperball of a fixed

adius, is a random variable belonging to a binomial

distribution with parameter P(x) (the probability for the

sample point to fall within this hyperball). Notice, our

estimate is a global estimate, i.e. the whole sample is

characterized by one number, though local differences are

possible. From this point of view, local dimensionality is much

more interesting, since we'll be able to detect local

inhomogeneities corresponding to various dynamic mechanisms.

Consider eq.(3.3) again. Apart from sample averaging,

there is also one more way to get a linear equation for

dimension determination. For this, one must choose { k } series
j

such, that the density estimates are very close and hence, the

dependence of РЛ*) on k can be ignored. Following these chosen

15



values { к } and the corresponding { R (м )}, one can

• .i • . . . . k. v

determine the estimate of the local dimension at a point x.

4. The Simulation Study

The Renyi dimension was determined for the samples generated

by the algorithm for the Serpinski carpet (Fig.3), Hehpn map,

and for samples obtained by different random number generators.

Experiments were carried out to investigate the method

sensitivity to the choice of parameters which include: the

sample-size, sequence of the nearest neighbours, the order of

the Renyi dimensions, and to study the possibilities of

separation of the regions with, anomalous structure. The

important for many applications aspect of the quality of the

quasi-random number generators was also considered. For

comparison' of: the- uniformity of the population of an

N-dimensional space, by "random" numbers, there were used

"cjuasi-random" numbers - LP-sieves, which uniformly fill an

N-dimensional cube. [25]. ' . .

Fig.-'4 presents the Renyi dimensions, of order from 1 to 15 -

the function #(q). The three random-number generators being

compared are: RNDM, which was widely used in the past decade;

RANECU, a generator lately recommended by F.James [26] and

NORIK, a matrix generator designed in the Yerevan Physics

Institute [27]...

Sets of two-dimensional random quantities distributed in a

square of side 1 were considered. The slopes connecting the

values of the moments of the invariant probability measure

(2.3) were calculated through 70 points for distances equal to

the average distance to the nearest, neighbours with numbers



from 6 to 75, the orders of dimensions being chosen from 1 to

15, the size of samples was 1000 and 5000.

For a strictly periodical structure of LP-sieves, all the

3enyi dimensions are the same: ф{ q)=qd, the • rand.om number

generators show some deviation from uniformity, which is due to

limitedness of the sample. The matrix generator reveals

somewhat better results.

Fig.5 presents Renyi dimensions calculated using different

R.-sequences (R. sequence consists of an average distances fromк . к

1 to 5, 1 to 25,..., 1 to 75 nearest neighbours).' The smaller

the range over which the dimension is determined, the more the

random fluctuations and the more the difference between the

function ф(q) and the line y=qd , which corresponds to complete

uniformity. •

Fig.6 shows the histogram of the local dimensions of a mixed

sample consisting of a mixture of 500 events, of Serpinski's

carpet (d ~1.9) and 500 events of Henon's map (d ~1.2). Two
2 2 •

peaks are clearly seen, which correspond, to two modes (the

correlation dimensionality is binned).

Unimodal distributionr. corresponding to data of the same

type are shown in Figs^7 and 8.

A quasi-periodical distribution was used to "scan" the

fractal support with the purpose to determine the anomalous

areas: the dimensionality was calculated in the nodes of the

LP-sieve (fig.9). Fig.10 presents the results of scanning of a

square of side 0.9, where the Serpinski carpet is situated. For

the sieve points fallen into the empty areas of the carpet the

fractal dimension turned out to be >2.2, which allows them to

be reliably separated.

The quasi-random sequence itself also turned out to be

non-uniform on the boundaries of its support shown in Fig.11.



The program code is written in Fortran-77 for VAX- and

IBM-type computers (operational system VM). Some subroutine

from KNN multivariate density estimation package [17] are used

for NN distances calculations and Q-tuples count. The

calculations have been carried out on a EC-1046 computer in the

computation center of the Yerevan Physics Institute.

CONCLUSION

To summarize, we have investigated a new method of

multiparticle data handling, allowing to deal with the large

amount of particles produced in modern colliders.

We have demonstrated how the Renyi dimensions can be used as

a quantitative measure to outline possible inhomogeneities in a

3N-dimensionaI momentum space or in the rapidity

(pseudorapidity) distributions.

Ue introduce a simple technique for Renyi dimensions

calculation. A universal scale, a sample-averaged distance to

NN, was offered. A q-tuples counting algorithm provides an

evaluation of Renyi dimensions in a sizable range of q-values.

KNN algorithm for correlation dimension calculation is much

more suitable and precise compared to box-counting algorithms.

By the local dimension distribution obtained on fractal

support we can judge about different mechanisms which took part

in the creation of the given set.

The application of these ideas to the analysis of

multiparticle production dynamics, requires intensive Monte

Carlo simulations and detailed quantitative comparisons of

simulated and experimental data.

I express my sincere gratitude to S.G.Matinyan for helpful

discussions.
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FIGURE CAPTIONS

Fig.l Self-similar cascade decay of a particle with mass III. On

the r-th step of the cascade development there are 2

particles with mass m/a .

Fig.2 The straight line slope determination, by which the

correlation dimensionality of the Serpinski carpet is

determined.

Fig.3 The 5th generation of the Serpinski*s carpet,

5000 points.

Fig.4 The ф{ q) curve.

For a completely uniform set of quasi-random numbers in

square of side 1, all the Renyi dimensions are the same,

the pseudo-random numbers somewhat deviate from

uniformity.

Fig.5 Comparison of the degree of non-uniformity of population

of a unit square by two-dimensional random numbers (the

RNDK generator).. The narrower the R. sequence for
К

determination of the Renyi dimension, the higher the

non-uniformity.

Fig.6 Histogram of the local dimensionality of a mixed sample

- a Serpinski carpet & a Henon map.

Figs.7,8 Distributions (normalized histograms) of the local

dimensionalities determined for samples of

two-dimensional quasi- and pseudo-random numbers. •

Fig.9 A planar LP-sieve, 1024 nodes.

Fig.lO The results of scanning of a Serpinski carpet: + denote

points where the local dimension is >2.2.

Fig.11 The results of scanning of a planar LP-sieve over the

boundaries of its support; + denote points where the

local dimension is >2.2.
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