

Role of actual atmospheric variables in the model of cosmic ray induced ionization

Šlegl, Minářová, Sokol, Ploc

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Cloud Electrification Model (CEM)

- model of storm electrification based on numerical weather prediction **COSMO**
- developed at the **Institute of Atmospheric** Physics of the CAS
- uses function of cosmic ray induced ionization induced - G function
- can be used for a parametrization of real weather in the storm condition including water content and charge structure

Graph: development of storm cloud calculated with CEM for three different vertical profiles of G functions (analytical, 250, 600, and 1500 MV ofsular modulation potential). X axis represents number of grid points. Preliminary results.

Small ion parametrization equation

$$\frac{\partial n_{\pm}}{\partial t} = -\nabla (n_{\pm} \boldsymbol{V} \pm n_{\pm} \boldsymbol{\mu}_{\pm} \boldsymbol{E} - K_m \nabla n_{\pm}) + \boldsymbol{G} - \alpha n_{\pm} n_{-} - S_{at} + S_{pd} + S_{evap}$$

 n_+, n_- positive and negative ion concentrations

- $n_{\pm}V$ advection
- $n_{\pm}\mu_{\pm}\boldsymbol{E}$ ion drift motion
- $K_m \nabla n_{\pm}$ turbulent mixing
 - G background cosmic ray ion generation rate
- $\alpha n_+ n_-$ ion recombination rate
 - S_{at} attachment to hydrometeors
 - S_{pd} point discharge current from the surface
 - S_{evap} release of any charge as ions from hydrometeors that evaporate completely

G function

G - vertical profile of cosmic ray induced ionization of the atmosphere

The Graph shows different G profiles calculated with the CRAC:CRII model for different solar activities and cut off rigidities.

Use of CRAC:CRII model for CEM

* Usoskin, I. G., *et al.* (2017), Heliospheric modulation of cosmic rays during the neutron monitor era: Calibration using PAMELA data for 2006–2010, *J. Geophys. Res. Space Physics*, 122, 3875–3887,
** Koldobskiy, S. A., *et al.* (2019). Validation of the neutron monitor yield function using data from AMS-02 experiment, 2011–2017. *Journal of Geophysical Research: Space Physics*, 124, 2367–2379.

Solar modulation of cosmic ray spectrum*

COSMO exported atmospheric profile

Altitude above sea level [m]

Correction to realistic pressure-height relation - CRAC:CRII

data taken from COSMO model for August 24, 2018 - profile with highest amount of included water

COSMO exported atmospheric profile

Altitude above sea level [m]

Correction to realistic cloud water content

data taken from COSMO model for August 24, 2018 - profile with highest amount of included water, MCNP Monte Carlo simulation

- PHITS based calculations
 - PARMA model of cosmic ray particles spectra
 - data from CEM-COSMO
 - electric field
- measurements of ambient ions
 - Gerdien tube
 - especially near the ground

Vojtek, Tomas & Skoupil, Tomas & Fiala, Pavel & Bartusek, Karel. (2006). Accuracy of Air Ion Field Measurement. Piers Online. 2. 412-415. 10.2529/PIERS050905095240.