TGE at UHECR energies

Roberta Colalillo Università degli Studi di Napoli "Federico II NOR AMBERD, Byurakan, 14/10/2019, TEPA 2019

Theoretical Models

0<u></u>_3

-1

logE (GeV)

-2

Cartoon demonstrating electron acceleration and multiplication in the electric field of the lower dipole of the thundercloud

Chilingarian et al., EPJ Web Conf. 197 (2019) 03001

Auger SD Exotic Events

Presented @ TEPA 2018

Cosmic Ray Signal in the Auger SD

Shower with E= $3x10^{19}eV$, $\theta=28^{\circ}$

Auger SD Exotic Events

- Larger time scale (~10 µs);
- Many triggered detectors arranged in circular shape;
- Some stations have lightning induced signal
 - \rightarrow high frequency noise

Simulation Conditions

Production of CORSIKA showers activating the EFIELD option:

Primary: proton - iron, oxygen Energy: 10¹⁹ eV - 10¹⁷ and 10¹⁸ eV, Zenith: 0° - 7°, 15°, 22°, 30°, 45°, 60° Thinning: 10⁻³ <u>HE model</u>: QGSJET-II.04 <u>LE model</u>: fluka

 $E_z \rightarrow \text{from 1.8 to 2.5 kV/cm} \rightarrow \text{step 0.1}$ $E_z \rightarrow \text{from 2.5 to 4 kV/cm} \rightarrow \text{step 0.5} + 5 kV/cm$ (NO measured value)

<u>Cloud base</u> = 2452 m \rightarrow 1 km above the Auger site – 0.5, 2, 3, 4, 5, 6 km

log(E) for gamma

Scan 0.1 from 1.8 to 2.5 kV/cm

log(E) for gamma

Scan 0.1 from 1.8 to 2.5 kV/cm

Scan 0.1 from 1.8 to 2.5 kV/cm

We have the first big enhancement in the particle flux with E = 2.3 kV/cm.

e-/e+ at the Observation Level log(E) for EM

e-/e+ at the Observation Level

Scan 0.1 from 1.8 to 2.5 kV/cm

log(E) for EM

We can see an enhancement starting from E = 2.5 kV/cm.

Muon at the Observation Level

log(E) for mu

NO ENHANCEMENT. The same was observed at lower energies.

Particle Number Vs Efield

Nearly Exponential Increase

NO El Field \rightarrow gamma, e-e+, µ: 3.34e+10, 2.90e+09, 6.01e+07

 $E = 4 \text{ kV/cm} \rightarrow \text{gamma, e-e+, } \mu$: 2.12e+13, 7.42e+11, 5.85e+07

 $E = 5 \text{ kV/cm} \rightarrow \text{gamma, e-e+, } \mu$: 7.09e+13, 3.02e+12, 5.59e+07

Particle Number Vs Efield

Nearly Exponential Increase

NO El Field \rightarrow gamma, e-e+, µ: 3.34e+10, 2.90e+09, 6.01e+07

E = 4 kV/cm → gamma, e-e+, μ : 2.12e+13, 7.42e+11, 5.85e+07 E = 5 kV/cm → gamma, e-e+, μ : 7.09e+13, 3.02e+12, 5.59e+07

Particle Number Vs Efield

Fractional Particle Number Vs Efield

Corsika Footprint – NO field

Corsika Footprint – E_z = 1.8 kV/cm

Corsika Footprint – E_z = 1.9 kV/cm

Corsika Footprint – E_z = 2.0 kV/cm

Corsika Footprint – E_z = 2.1 kV/cm

Corsika Footprint – E_z = 2.2 kV/cm

Corsika Footprint – E_z = 2.3 kV/cm

Corsika Footprint – E_z = 2.4 kV/cm

Corsika Footprint – E_z = 2.5 kV/cm

Corsika Footprint – E_z = 3.0 kV/cm

Corsika Footprint – E_z = 3.5 kV/cm

Corsika Footprint – E_z = 4.0 kV/cm

Corsika Footprint – E_z = 5.0 kV/cm

Corsika Footprint – First Example

Corsika Footprint – First Example

Corsika Footprint – First Example

Corsika Footprint – Second Example

Corsika Footprint – Second Example

Corsika Footprint – Second Example

Particle Number Vs Cloud Altitude -Footprint Cloud base: 0.5 km

Particle Number Vs Altitude - Footprint Cloud base: 1.0 km

Particle Number Vs Altitude - Footprint Cloud base: 2.0 km

Particle Number Vs Altitude - Footprint Cloud base: 3.0 km

Particle Number Vs Altitude - Footprint Cloud base: 4.0 km

Particle Number Vs Altitude - Footprint Cloud base: 5.0 km

Particle Number Vs Altitude - Footprint Cloud base: 6.0 km

Particle Number Vs Altitude - Footprint NO field

Particle Number Vs Altitude

Corsika Footprint – Proton/Iron

Corsika Footprint – P/Ox 5 kV/cm

Particle Number and Primary Mass

Particle Number and Primary Mass

Particle Number Vs Zenith Angle θ=0°

Particle Number Vs Zenith Angle θ=15°

Particle Number Vs Zenith Angle $\theta=30^{\circ}$

Particle Number Vs Zenith Angle θ=45°

Particle Number Vs Zenith Angle θ=60°

Particle Number Vs Zenith Angle

Atmospheric Absorption

At the other zenith angles, the flux at the ground is constant within uncertainties. More statistics and further studies are necessary.

Inverted Electric Field

With the inverted electric field, there is a very small enhancement in gamma and positron number as expected.

Conclusions

- We have observed a big enhancement of gamma, electrons and positron fluxes at the ground when a shower crosses the electric field in a thunderstorm cloud;
- The footprint at the ground is larger than the shower footprint without electric field;
- The increase in the particle number at the ground is indipendent by the mass of the primary cosmic-ray and by its energy in the range [10¹⁷ eV, 10¹⁸ eV];
- Electric fields in high clouds (cloud base at more than 4 km) don't affect the fluxes at the ground.

- Scan in electric field direction?
- Non uniform electric field;
- Studies of correlation between Xmax position and enhancements at the ground.
- Studies are in progress to understand if this model can explain Auger SD peculiar events or not
- ▶ and if these enhancements can affect cosmic-ray reconstruction.