October 14 - 17 2019 TEPA 11 years of TGE research on Aragats

Numerical modeling of stepping process in negative lightning leaders

A.A. Syssoev^{1,2}, D.I. Iudin^{1,2,3,4}, A.A. Bulatov¹, and V.A. Rakov^{1,5,6}

¹Institute of Applied Physics of Russian Academy of Sciences, Nizhny Novgorod, Russia
²Privolzhsky Research Medical University, Nizhny Novgorod, Russia
³Space Research Institute of Russian Academy of Science, Moscow, Russia
⁴Federal State Budgetary Educational Institution of Higher Education "Nizhny Novgorod State University of Architecture and Civil Engineering", Nizhny Novgorod, Russia
⁵University of Florida, Gainesville, Florida, USA
⁶National Research University Higher School of Economics, Moscow, Russia

Relevance of The Study

The top ten questions in lightning research by Dwyer and Uman [2014]:

2. <u>What physical mechanisms govern the propagation</u> of the different types of lightning leaders (negative stepped, first positive, negative dart, negative dartstepped, negative dart-chaotic) between cloud and ground and the leaders inside the cloud?

5. By what physical mechanism do lightning leaders emit pulses of X-rays? Do the X-rays play a role in lightning propagation? By what mechanism do thunderclouds generate relatively-steady internal Xrays? Do X-rays and other high energy radiation affect cloud electrification and play a role in lightning initiation?

Motivation

Petersen et al. [2013]

Qi et al. [2016]

(b) -20µs

Goals of The Study

- 1. On the basis of [*Iudin et al.*, 2017]* to develop a numerical model of the negative stepped lightning leader taking into account the asymmetry between the positive and negative streamers development of and having sufficient space-time resolution to describe the processes occurring in the negative leader streamer zone;
- 2. To describe the entire sequence of processes composing the negative leader stepwise development, including the emergence of space stems and space leaders developing from them;
- 3. After achieving the maximum qualitative and quantitative correspondence between model and real discharges, to draw conclusions about the processes responsible for the negative leader stepwise development.

*Iudin, D. I., V. A. Rakov, E. A. Mareev, F. D. Iudin, A. A. Syssoev, and S. S. Davydenko (2017), Advanced numerical model of lightning development: Application to studying the role of LPCR in determining lightning type, *J. Geophys. Res. Atmos.*, 122, doi:10.1002/2016JD026261.

 $E^{-} = 2E^{+}$

Problem Formulation

Probabilistic Approach

Step-Formation Process

Step-Formation Process

Model Results: Steps Parameters Streamer-to-leader transition in final bridging link connecting the main negative leader with the space one

Model Results: Step-Associated Wave Dissipation

Model Results: Current Oscillograms in Channel Sections

Model Results (100 A)

Model Results (200 A)

Model Results (300 A)

Model Leaders General Parameters

Branch number	3D propagation speed, 10⁵ m/s	Interstep intervals, µs	3D step length, m	Charge transferred, mC	Line charge density, µC/m			
100 A								
1	2.14	29.1	9.0	1.99	369			
2	1.88	44.0	8.8	1.92	524			
3	2.27	46.2	8.9	1.83	504			
200 A								
1	2.23	36.3	9.1	2.04	379			
2	2.33	26.4	8.8	1.92	408			
3	2.15	43.8	9.2	1.99	563			
300 A								
1	2.72	24.2	9.2	1.88	325			
2	2.70	21.6	9.1	2.05	406			
3	1.81	51.8	8.8	2.01	398			
4	2.11	45.7	8.9	2.01	346			
5	2.20	43.2	8.6	2.11	493			
6	2.62	41.2	9.1	1.88	524			
7	2.75	32.7	9.1	1.94	442			
Mean	2.30	37.4	9.0	1.97	437			
Experimental data	2.00	5.0-50.0	≈10.0	1.00-4.00	500-1000			

Summary

1. A numerical model of the negative lightning stepped leader was developed, which

- for the first time takes into account the asymmetry of development fields of positive and negative streamers;

- takes into account the evolution of discharge channels electrical parameters;

- has a sufficiently high spatio-temporal resolution, which allows one to adequately describe the entire sequence of the negative leader stepformation process, its branching, and formation of the leader channel sheath.

2. The nature of the step-formation process is caused by the difference between characteristic fields of positive and negative streamers development;

3. It is shown that the cause of space stems appearance is the field amplification arising due to the negative charge inhomogeneously distributed in front of the newly formed negative leader tip during the negative corona streamer burst, which completes the step-formation process.

4. The model leader parameters (propagation speed, step length, interstep intervals, charge transferred by the step, leader channel sheath line charge density) are in good agreement with experimental data and modern knowledge about the physics of lightning.

Acknowledgment

The speaker sincerely thanks his scientific manager Dmitry Igorevich Iudin for providing the ideological basis of the work and comprehensive support during its realization and Vladimir Aleksandrovich Rakov for deep involvement in the theme of this study, numerous valuable comments and moral support.

Iudin D. I., Doctor of Philosophy, Doctor of Biological Sciences, Leading Researcher of IAP RAS

Rakov V. A., Doctor of Philosophy, professor of the University of Florida, USA

Thank you for attention!

General Leader Development Algorithm

Characteristics of natural negative lightning stepped leaders observed using photoelectric systems and framing

came	ras
------	-----

Cturch /	Interstep	2D step length,	2Dª leader speed,
Study	interval, µs	m	10⁵ m/s
<i>Chen et al.</i> ^b [1999]	5.0-50.0	7.9-20	4.9-11.0
(Australia)			
<i>Chen et al.</i> ^b [1999]	10.0.21.0	8.5	4.9-5.8
(China)	18.0-21.0		
<i>Lu et al.</i> [2008]	0.2-15.7	-	15.0
<i>Hill et al</i> . [2011]	12.2-40	4.8-7.1	2.7-6.2
Petersen and Beasley [2013]	-	-	5.6
<i>Tran et al.</i> [2014]	-	14, 15	6.5-9
<i>Qi et al.</i> [2016]	13.9-23.9	-	4.1-14.6
<i>Jiang et al.</i> [2017]	6.9 ^c	1.3-8.6	-

^aExcept for *Petersen and Beasley* [2013], who measured 1D leader speed.

^bStudies based on the use of ALPS photoelectric system, as opposed to framing cameras used in all other studies summarized in this table.

^cFound as the observation period of 667 µs divided by the total number (96) of individual step-wise channel extensions.

Examples of other lightning parametrization models

Mansell et al. [2002]

Probabilistic Approach

Model Results: Step-Associated Spectrum

Model Results: Step-Associated Spectrum

Problem formulation

1 – negative leader channel; 2 – leader channel sheath; 3 – negative leader tip; 4 – negative corona streamer burst

Результаты Моделирования Начальный этап

Результаты Моделирования Промежуточный этап

Результаты Моделирования Финальный этап

Dynamics of Ions in Thunderclouds X **Lightning Initiation**

D.I. Iudin, V.A. Rakov, A.A. Syssoev, and A.A. Bulatov

Content

- Basic Equations: Species evolution and Depository multiplication
- Ion Production Centers: Critical rate of appearance and Positive feedback
- Illustrative example: Streamer interaction and Lightning seed formation

Balance equation for electrons

$$\frac{\partial n_e}{\partial t} = (v_i - v_a)n_e \qquad v_a \approx 10^8 \text{ s}^{-1}$$

ionization frequency attachment frequency

$$v_i(E_b) = v_a(E_b)$$
$$E_b(z)[MV/m] = 3.2 \cdot \exp\left(-\frac{z[km]}{8.4}\right)$$

under normal conditions at sea level

Basic equations

detachment process

charge transfer processes: from light unstable ions to stable heavy ions

Quasi-stationary approximation

$$\lambda^+ \approx \frac{\nu_i \nu_d}{\nu_a} - \nu_h = \mathfrak{J}_i - \nu_h$$

Electrons are an intermediate product of plasma-chemical reactions

 $\mathbf{v}_a n_e \approx \mathbf{v}_d n_n$

Balance equation for negative ions

Effective ionization frequency

$$\lambda^{+} \approx \frac{\nu_{i}\nu_{d}}{\nu_{a}} - \nu_{h} = \mathfrak{J}_{i} - \nu_{h} \qquad \mathfrak{J}_{i} = \frac{\nu_{i}\nu_{d}}{\nu_{a}}$$
$$\frac{\partial n_{n}}{\partial t} = (\mathfrak{J}_{i} - \nu_{h})n_{n}$$

$$\mathfrak{J}_i(E_c) \simeq rac{\mathbf{v}_i(E_c)\mathbf{v}_d(E_c)}{\mathbf{v}_a(E_c)} \simeq \mathbf{v}_h(E_c) \longrightarrow E_c \lesssim E_b$$

Uniform electric field

 $v_h \simeq 1 \text{ s}^{-1}$

 $\mathfrak{J}_i \ll \mathfrak{V}_h$

Frequency of ion losses to hydrometeors

For electric fields measured inside thunderclouds

Thundercloud electric field

M 🔶

average number of ion production centers per unit time per unit volume

 \cong 0.1 $m^{-3}s^{-1}$

Ion Concentration Increase

In residual ion spot, the electron detachment provides seed electrons just before the field amplitude reaches the breakdown value, intensifying electron and positive ion production when a new center is activated.

Positive feedback

Volumetric discharge activity

Just the presence of streamers does not guarantee that a leader will form

Volumetric discharge activity

J **S** htning U •)

t = 0 us

Conclusion

- The process of energy relaxation in thundercloud starts with avalanches and then proceeds to larger spatial scales.
- We postulate the existence of ion production centers accompanying hydrometeors collisions or near collisions.
- The rate of occurrence of ion production centers should exceed the critical level, which has been observed in thunderclouds.