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Abstract

The estimation of the significance of the peaks in one- and two-dimensional distributions is one of the most important problems in
high-energy physics and astrophysics. The physical inference from low-statistics experiments usually is biased and many discoveries lack
further confirmation. One of the typical mistakes in physical inference is the use of non-adequate statistical models. We analyze the sig-
nificance of the experimental evidence in the on-going efforts of detecting the point source of cosmic rays. We found that simple statistical
models (Gaussian or Poisson) did not adequately describe the experimental situation of point source searches. To avoid drawbacks
related to usage of the incorrect statistical model, we introduce new extremum statistical models appropriate for the point source
searches. The analysis is conducted in the framework of two models utilizing extremum statistics: first – using the fixed grid of celestial
coordinates, and second – using the tuned grid (introducing more degrees of freedom in the search). The test distributions for the sig-
nificance estimation are obtained both from simulation models and from the analytical model of extremum statistics. We show that the
second model gives adequate physical inference, while the first model can lead to the positively biased conclusions of the point source
significance.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Searches of the cosmic ray sources is one of the most
promising ways to gain insight in the long-standing prob-
lem of the origin of these particles. While many experi-
ments have shown that the distribution of arrival
directions are isotropic [2 and references therein, 3], exis-
tence of the small-angle anisotropies has been claimed by
several groups in the ‘‘knee’’ energy region 1014–1016 eV
[18,7] and the ultrahigh energy range >1019 eV [20].

Physicists usually attribute considerably greater than
statistically expected positive fluctuation to a ‘‘source’’.
However, experience has shown that large excesses, up to
6r, are more common than were expected [14]. When con-
sistent and reliable statistical tests are applied we cannot
obtain convincing proof for point sources. It was demon-
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strated in 1973 that the evidence for many of the claimed
c-ray sources, when properly treated, is rather weak [16].
Another striking illustration of the importance of accu-
rately assessing the significance of peaks embedded in the
low statistics, high background experiments is the ‘‘discov-
ery’’ of the so-called pentaquark particle, which contains
four quarks and one antiquark, according to the claims.
In 2003 physicists from many laboratories around the
world made headlines, announcing that they had found a
new particle. There were above 10 particle detections
reported with very high confidence level of 5 and even
6r. Unfortunately, new experiments with better statistics
do not confirm existence of the new particle. The ‘‘over-
whelming body of negative evidence’’ indicates that the
pentaquark might be an artifact [19].

Therefore, in the search of the point sources or new par-
ticles, the most important is to prove that observed excess
is not background fluctuation only or systematic effect
introduced by the detector. Positive excess of counts is
compared with mean value of background count rate and
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its variance. It is also necessary to take into account the
number of attempts physicist made to reveal the signal
more effectively. Any re-binning and shifting of the grid,
superimposed on the data, changes the statistical model
used for estimating the significance of the source [16]. It
is often very difficult to account on all specific experimental
procedures applying for the revealing signal. Therefore, the
significance obtained using inadequate assumptions usually
lead to positively biased significances and observations
supported by significances which are unlikely to be chance
fluctuations, have not been able to be verified in later
experiments. It is due to the overall problem related to
the choice of the appropriate statistical model. The
ascribed physical inference could be valid within a chosen
model, but tell nothing about the validity of the model
itself.

In this publication we use both analytical approach and
Monte-Carlo method to obtain the statistical model, ade-
quately describing the signal searches. The sources for pos-
sible erroneous physical inference based on biased models
are clearly stated and discussed. As an example for compar-
ing the different statistical models we consider the observa-
tions of the Monogem Ring (MR) by surface particle
detector arrays [7]. The MR is a supernova remnant
(SNR), located at a distance of �300 parsec from the Sun,
with an �100K year-old radio pulsar, PSR B0656+14, near
the center [21]. Recently, three new observations of MR
were published. Two of them [15,6] confirm a signal from
MR, while the third one [2] report no signal from MR with
very large significance. Nonetheless, the MR continues to be
considered as a candidate source for cosmic rays [12,13].
Therefore, we consider the rigorous clarification of the point
source search methodology as a very up-to-date and impor-
tant point, which can help to solve the long-standing prob-
lem of the cosmic ray (CR) origin.
Fig. 1. MAKET-ANI detec
2. Monogem Ring observation by the MAKET-ANI

detector

In 2003 we reported significant excess of Extensive Air
Showers (EAS) whose arrival direction pointed to the
Monogem Ring [7]. In the search for the source of the cos-
mic rays (CR), we used data from the MAKET-ANI detec-
tor on Mt. Aragats in Armenia [4,8], from years 1997 to
2003. In the experiment we measure the horizontal coordi-
nates of the incident primary particle, by calculating the axes
of the Extensive Air Shower (EAS), namely, zenith angle h
and azimuth /, and then transforming them to equatorial
coordinates – Right Ascension (RA) and declination d,
according to the transformation equations [17]. To do this
we need to know the angle formed by the detector axes with
respect to the direction to the North Pole and the time of
event registration, in addition to the horizontal coordinates.
After measuring the geographic alignment of the MAKET-
ANI array in the summer of 2004, we found an error in the
conversion of the measured EAS directions from the
horizontal coordinates to equatorial (celestial) coordinates
[9], which significantly altered our original conclusion.

As can be seen in Fig. 1, the actual angle between the
MAKET-ANI detector axis and the North–South geo-
graphic axis of the earth is 17�, while in the MAKET-
ANI data base, formed in 2001, zero degrees was assumed.
This erroneous assumption resulted in an apparent excess
of showers in the histogram bin pointed to the MR direc-
tion (signal bin with 43 EAS pointed on the MR direction)
as is seen in (Fig. 2(a)). After the correction of the event’s
equatorial coordinates the excess of the points in the ‘‘sig-
nal’’ bin reduced as presented in Fig. 2(b) (only 28 EAS
remain). The ‘‘migration’’ of points from the ‘‘signal’’ bin
to the neighboring bins is demonstrated in Fig. 3. Compact
cluster of showers in the signal bin shown in Fig. 3 as dia-
tor, Aragats, Armenia.



Fig. 2. A part of the sky map (the ‘‘signal’’ bin) obtained from MAKET-ANI EAS data, before (a) and after (b) the correction of the coordinate
conversion. Each point in the map represent shower coming from the definite direction.
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Fig. 3. Migration of events as measured by the MAKET-ANI detector
from the ‘‘signal’’ bin to neighboring bins after correction of celestial
coordinates.
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Fig. 4. Averaged daily distribution of MAKET-ANI detector triggers for
EAS initiated by primary particles with energies E > 1014 eV shows no
time dependence.

Fig. 5. Distribution of MAKET-ANI EAS data by Right Ascension (RA)
for the year 1999.
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monds is redistributed among 12 another same size bins
shown in same figure as triangles.

By examining the MAKET-ANI EAS database, we
found that the detector does not introduce any bias in time,
because there was no preferable time or season of particle
detection. Fig. 4 shows that the time distribution of the
detected particles averaged over 320 days in 1999 is uni-
form, which leads to uniform distribution by the Right
Ascension, as shown in Fig. 5. The analogous distributions
of other years are also highly uniform.

However, the distribution by zenith angle in horizontal
coordinates is highly anisotropic, because of the different
effective thickness of atmosphere for each angle, which inci-
dent particles have to pass to reach the detector [1]. For the
MAKET-ANI EAS data this anisotropy is well described
by a cos6h dependence, so the distribution of detected par-
ticles by zenith angle is described by the function sinh
cos6h, having maximum at h � 22� (as shown in Fig. 6).
When we transform the horizontal coordinates into
celestial coordinates, the uniform time distribution is trans-
formed to an isotropic RA distribution, and the aniso-
tropic zenith angle distribution is reflected in the form of



Fig. 6. Distribution of MAKET-ANI EAS data by zenith angle.

Fig. 7. Distributions of MAKET-ANI EAS data by declination.
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anisotropic declination distribution. Since the declination
of the zenith is equal to the latitude (40.5� for the Aragats
research station), the maximum in the distribution of dec-
linations appears at d � 40� as shown in Fig. 7. This strong
dependence of the number of events upon the declination
angle implies that when searching for uniformity in celestial
coordinates we have to choose narrow intervals – declina-
tion ‘‘belts’’, within which the distribution of events can
be treated as approximately uniform.

Proceeding from the detector angular accuracies and
available EAS data we choose the bin size as Da · Dd
(3� · 3�), covering a 360� · 60� equatorial coordinate
range, with 20 declination belts in total, each divided into
120 bins.

The cosmic ray point source should manifest itself as an
excess number of counts in one, or several adjacent bins, in
comparison with the corresponding belt-average value. In
our analysis the Right Ascension Scan (RAS) method [1]
was implemented, where not only one, but all declination
belts are used to form statistical test distribution. The grid
with bin (cell) size of (3� · 3�) is superimposed on the two-
dimensional distribution of the actual values of the celestial
coordinates of detected showers, i.e. on the, so-called, sky
map. We then examined the distribution of the events
within each cell and made further analysis according to
the H0 probabilistic model described below.

As is usual in statistical hypothesis testing, the main
hypothesis (H0) we need to check is in opposition to the
hypothesis we are interested in, i.e. we check the hypothesis
that the arrival of the CR on the MAKET-ANI detector is
isotropic (‘‘no-signal’’ hypothesis). In this case it means to
determine: is the detected enhancement in the ‘‘signal bin’’
a simple random fluctuation of the isotropic distribution?
If we see a large deviation of number of events fallen in
particular bin from the value expected assuming the valid-
ity of H0, then we will have a very low probability of H0

being true. Therefore, we can reject H0. But, of course, it
does not imply that the opposite hypothesis is automati-
cally valid. As was mentioned by Astone and D’Agostini
[5], a revised version of the classical proof-by-contradiction
is hidden in the logic of standard hypothesis testing – ‘‘in
standard dialectics, one assumes a hypothesis to be true,
then looks for a logical consequence which is manifestly
false, in order to reject the hypothesis. The ‘slight’ differ-
ence introduced in ‘classical’ statistical tests is that the false
consequence is replaced by an improbable one’’.

3. Gaussian approximation

The number of events falling in each bin is indepen-
dently and identically distributed random variables obey-
ing multinomial law. Multinomial process consists of the
random realization of one of Nd possibilities; in our case
– classes, representing the division of the range of all decli-
nations into 20 fixed declination ‘‘belts’’. In our probabilis-
tic treatment of the problem we convolute the uniform
distribution of RA and treat the number of events hitting
different bins as realizations of the multinomial random
process with �Nj; j ¼ 1; 20 fixed means. Then, by normaliz-
ing each bin content by the mean and variance of the
corresponding declination belt we obtain standard Gauss-
ian distribution N(0, 1) to be used further as the test
statistics:

ri;j ¼
Ni;j � �N jffiffiffiffiffiffi

�N j

p ; i ¼ 1;N a; 3; j ¼ N d1;d2;3 ð1Þ

where Ni,j is the number of events in the rectangular bins,
�Nj and

ffiffiffiffiffiffi
�N j

p
are the RA averaged mean and mean square

deviation of number of events within the bin of jth belt,
Na = 360 is the number of RA divisions; Nd1 = 6.6 is the
first declination, Nd2 = 66.6 is the last declination for a
total 20 declination belts, each of 3�. We were looking
for single source candidates in the two-dimensional Da ·
Dd(3� · 3�) grid, covering a 360� · 60� equatorial coordi-
nate range with M = 2400 bins. The rectangular equatorial
coordinate system (grid) origin was taken at (0�, 6.6�).

Of course, the multinomial significances are different
from the Gaussian ones [11] specially for the large signifi-
cance values. Nevertheless, first we will present results with
the commonly used Gaussian distribution. The bias, intro-



Fig. 9. Signal significance test with full equatorial coverage with 2400,
3� · 3� bins; Ne > 106, after correction of coordinates conversion. Note
that event at 6.04r has disappeared.
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duced due to the slow convergence of Gaussian approxima-
tion toward the correct multinomial (Poisson) values, will
be discussed in other paper.

More than 2 million showers with sizes starting from
Ne > 105 electrons, detected by the MAKET-ANI detector,
were distributed among the M = 2400 angular bins. The
‘‘signal’’ was revealed when we examined the sub-sample
of �6 · 104 events with Ne > 106. According to the logic
of hypothesis testing, we calculate the test statistics by
applying Eq. (1) to the experimentally detected showers
and using a fixed equatorial grid. As we can see from
Fig. 8, the shape of the cumulative distribution of the par-
ticles was very close to standard Gaussian distribution
N(0,1), with a v2 test value of �1.5 per degree of freedom.
Only one direction from the 2400 demonstrates significant
deviation from standard Gaussian distribution N(0, 1).
Therefore, we concluded, that the obtained distribution
supports the model of isotropic ‘‘background’’ and ‘‘sig-
nal’’ mixed with ‘‘background’’ in one of 2400 equatorial
bins.

From the obtained value of 6.04 in the ‘‘signal bin’’, as
noted by a circle in Fig. 8, we calculated the corresponding
probability of obtaining this value under H0 hypothesis.

We assumed that maximal obtained value for the signal
in bin 6.04 belongs to the N(0, 1) distribution. Based on this
assumption, the probability density distribution function of
obtaining this value as the maximal value among M possi-
bilities is straightforward [10]:

P MðxÞ ¼ M � gðxÞð1� G>xÞM�1 ð2Þ
where g(x) is standard Gaussian probability density for the
signal bin; G>x ¼

R1
x gðtÞdt is the so-called test statistics p-

value: the probability to obtain the value of the test statis-
tics in the interval greater than x.

To obtain the probability of observing number of events
equivalent to or more than 6.04 standard deviations in one
out of 2400 bins (meaning the p-value of the distribution
Fig. 8. Signal significance test with full equatorial coverage with 2400,
3� · 3� bins; Ne > 106, before correction of coordinates conversion. Note
the 6.04r point in the circle.
PM(x)), we need to integrate PM(x) in the interval [6.04,
+1). For M = 2400 we obtain

R1
6:04

P MðxÞdx � 2� 10�6.
Proceeding from this very small value, we rejected the null
hypothesis and concluded that the MAKET-ANI has
detected signal from the direction of the Monogem Ring.

After correcting the error in the transformation of the
MAKET-ANI geographic coordinates to celestial coordi-
nates we found no significant deviation from H0, as it is
seen from Fig. 9. Note that the events at 6.04r, which
existed before the coordinate system correction in Fig. 8,
have now disappeared in Fig. 9.

However, the question arises: how did we obtain such
low chance probability. Can we explain it as a simple ran-
dom coincidence, or was it due to the wrong statistical
model? We found it very improbable that we were so
unlucky that a chance probability of two out of a million
was realized. Therefore, we put the statistical model itself
under question. In the next sections we will analyze the
sources of our error and will develop new methodology
for analysis, which will give adequate inference.

4. Bin regrouping effects

The statistical model we use for estimating the chance
probability, is dependent not only on the chosen distribu-
tion function, but also on the methods of grouping of
experimental data. ‘‘Where one is looking for deviation
from uniformity in a continuum, one cannot escape from
the multiplicity of possible groupings’’ [14]. Usually the
physicists adjust the grid superimposed on the sky map
slightly, to include the ‘‘signal’’ events in the selected bin
as much as possible. The logic of such an adjustment is
the following: if a randomly chosen, fixed grid divides the
signal between neighboring bins, why not try to shift the
grid to contain the entire signal in one bin?

In this logic one random grid is changed to another
and it seems that nothing essential happens in the process,
but as we will see, such a simple operation dramatically
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changes the estimate of chance probability. Each regroup-
ing leads to the increase of M in Eq. (2), thus changing the
chance probability. Usually, the regrouping effect is not
taken into account. Physicists make conclusions on the sig-
nal significance by calculating the chance probability
according to a simple Gaussian model, often obtaining
positively biased significances. To demonstrate that the
extremum statistics (2) accounts for the re-binning and pro-
vides correct chance probabilities we developed two numer-
ical models.

Our first model generates the random Gaussian vari-
ables in 120 RA bins in each of the 20 declination belts
according to the belt-specific means and variances as
 events
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Fig. 10. Distribution of the extremum test statistics values for the first simulati
simulation model – with tuning the grid to contain maximal signal – (b), (d),
obtained in the experiment, thus generating random sky
maps, analogous to that shown in Fig. 2, but for the entire
sky seen by the MAKET detector. After applying the nor-
malizing transformation (1) to the generated random map
we obtained M = 2400 random variables distributed
according to the standard Gaussian N(0,1). Then the max-
imum positive deviation from the N(0,1) was stored as the
value of the test statistics.

Our second model generates a number of events in the
same way as the first one. Then the origin of the equatorial
coordinate system (right ascension and declination) is
shifted by 0.1� in the range equal to one bin size
(3� · 3�). Thus, instead of one grid 30 · 30 = 900 different
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grids are tested. The goal of this procedure is to obtain
maximum possible ‘‘signal’’ for given distribution of
events. After the shift, the current value of maximum is
compared with the previous best one, and if the new one
is larger, it is saved as the best. The largest-obtained value
of maximum is stored. This value is just the largest positive
deviation for the given sky map and grid size obtained in
the grid tuning procedure.

The fixed grid model is usually assumed when calculat-
ing chance probabilities; nonetheless the tuned grid model
describes realistically the experimental situation in peak
searching. Our numerical experiment is designed to illus-
trate how the chance probabilities are changed and why
we can obtain very high significances if there is no signal
at all.

We generate the random sky map 1288 times, to obtain
the distribution of extremum statistics for fixed and tuned
grids. As we can see from Fig. 10 the large significance val-
ues (large r) occurred much more often for the tuned grids
(Fig. 10(b), (d) and (f)), as compared to the fixed grid
model Fig. 10(a), (c) and (e). Therefore, when calculating
chance probabilities we are at risk to make optimistically
biased inference: to get much higher significance than
experiment allows. We also can see in Fig. 10, that by
changing the number of experimental points (showers) fill-
ing the grid, the ‘‘r’’ distribution for the tuned grid changes
dramatically. For the number of events 2 · 104 the mean of
‘‘r’’ distribution equals 5.6, while for 6 · 105 events it is 4.5.
This demonstrates that if the number of events is small, and
bin-to-bin differences are large, then via tuning it is possible
to find the combination of event numbers which corre-
spond to very rare fluctuation. When the number of events
is enlarged, the corresponding bin-to-bin differences
became smaller and it is much more difficult to find large
fluctuations.

Therefore, in low-statistics experiments it is possible to
find ‘‘fake’’ signal with very large significance. In Fig. 11
we demonstrate how we can obtain a realistic chance prob-
ability for the MAKET-ANI experiment. We perform
numerical simulations of the MAKET-ANI’s detection of
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Fig. 11. The comparisons of the two ways of point signal searches, (a) with o
the Monogem Ring with both fixed and tuned grid statisti-
cal models.

By the solid line in Fig. 11(a) and (b) we denoted the
analytical curve obtained from Eq. (2) for the M = 2400
(Fig. 11(a)), and M = 2400 * 600 (Fig. 11(b)). The histo-
gram on the same figures are obtained with simulations
with fixed (Fig. 11(a)) and tuned (Fig. 11(b)) models as
described above. The number of events was equal to the
one from the MAKET-ANI experiment �6 · 104 and
1288 independent random sky maps were generated. From
the fixed grid model (Fig. 11(a)) we can see that 6r (for sim-
plicity we use the 6r value, instead of 6.04r obtained in
MAKET-ANI experiment) is really very rare fluctuation.
The frequency of obtaining 6r from histogram equals to
0, because we perform only 1288 trials, and, we can expect
only �2.5 events from million according to analytical
calculations.

The frequency of obtaining 6r calculated from the
‘‘tuned grid’’ histogram (Fig. 11(b)) equals �2 from hun-
dred. The analytic calculation gives an order of magnitude
smaller value compared with frequency obtained from the
histogram. However, the difference between the fixed and
tined grid models is striking: at least three orders of
magnitude!

When we test many grids, probability to obtain large
‘‘r’’ values is dramatically enlarged. For the MAKET-
ANI statistics of �6 · 104 events with Ne > 106, we can eas-
ily obtain significance values exceeding 6 and even 7.
Therefore, we do not have enough evidence to reject the
H0 hypothesis, if measuring 6.04 value in MAKET-ANI
experiment. Remember, that H0 is the statement that the
distribution of cosmic rays is isotropic.

The cause of shift of ‘‘r’’ distribution mean to larger val-
ues when tuning the grid can be explained by enlarging of
the number of the tested grids, and, consequently – the
number of different bins.

The M multiplier in Eq. (2) represents number of all-
possible bins in which the maximum can occur. In the first
model we test single fixed grid M = 2400. In the second
model when we shift the grid, we test M new bins for each
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particular shift, enlarging total number of bins to M * K,
where the K is the number of different grids tested.

Thus the complexity of the second model is �K times
larger compared to the first one. To check this assumption
we enlarge the M value in Eq. (2) till the mode of analytical
function (2) comes close to the histogram mode. This
occurs at M = 2400 * 600, as shown in Fig. 11(b). We
reached rather good agreement of the analytic distribution
(2) and the tuned grid simulated distribution by the Monte-
Carlo method at value of K � 600, instead of 900 as
expected, because not all 900 grids result in different data
coverage. Some small shifts leave the distribution of the
events in 2400 bins the same. Therefore, such shifts should
not be count and value of K is smaller than 900.

5. Conclusions

• In estimating the significance of signal detection, we are
looking for the maximum value of deviation of the ‘‘sig-
nal bin’’ from the background, and statistical inference
is drawn based on the value of this maximum. There-
fore, the extremum statistics distribution (2), should be
used as the test statistics for estimating the significance
of signal.

• Both analytical model (2) and simulated distribution
obtained with the tuned grid Monte-Carlo method give
very consistent results, proving the necessity to account
on all choices of data grouping aimed at revealing the
signal.

• Performed statistical analysis of the MAKET-ANI sky
maps by the use of the tuned grid model does not sup-
port the hypothesis of anisotropy of CR flux; therefore,
we withdraw the conclusion of paper [7] which claims
the existence of a cosmic ray point source within the
Super Nova Remnant Monogem Ring.
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