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Based on a special data analysis methodology developed for non-direct multivariate experiments, we present the 
expected accuracies of the KASCADE experiment on the elemental composition and primary energy estimation. 
The calculations were carried out with CORSIKA simulations using the ANI applied package routines. The 
detector responce also was simulated. The Neural Networks classification, the Bayesian Decision Making and the 
Nonparametric Regression approaches are used and compared. 

1. I n t r o d u c t i o n  

The main objects of Extensive Air Shower 
(EAS) observations are the possible sources of 
cosmic rays and the mechanisms of particle ac- 
celeration in the interstellar medium. The par- 
ticular physical quantities to be measured are the 
energy spectra and elemental composition of cos- 
mic radiation incident on Earth atmosphere. The 
direct cosmic ray measurements on board of satel- 
lites and balloons are well described by the super- 
novae diffusive shock acceleration mechanism [1]. 
However, for energies above 1014 eV Fermi ac- 
celeration becomes less effective [2] and the most 
well-known peculiarity of cosmic rays - the so- 
called all particles spectrum cutoff (knee) is de- 
tected in the region of 3 x 1015 - 5 x 1015 eV [3]. 
Several hypothesis are proposed for the explana- 
tion of the particle acceleration for such energies 
[4,5], but lack of precise and reliable results on 
the elemental composition around the "knee" - 
prevents the strict physical inference of the new 
acceleration mechanism and (maybe) new type of 
natural high energy particle accelerators. 

Therefore, the problem of cosmic rays origin 
can only be solved if one succeeds in measuring 
the element composition of cosmic rays in the en- 
ergy range of 1014-1016 eV. However, direct mea- 
surements in the mentioned energy region are im- 
possible due to small fluxes, and mainly indirect 
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methods based on registration of EAS are em- 
ployed. 

Because of the difficulties in posing and solv- 
ing the inverse problems of cosmic ray physics, 
the primary composition has not yet been clearly 
determined, despite 40 years history of the exper- 
imental investigations [6-9]. Even the existence of 
the cutoff is put in question [10]. 

In contrast with previously used methods, 
where only the distributions (histograms) sum- 
marized over experiment and simulation respec- 
tively are compared, and mostly qualitative con- 
clusions were obtained. The techniques proposed 
here provide the possibility to analyze EAS data  
on event-by-event basis and obtain quantitative 
results [11]. 

2. Mass discrimination of  p r i m a r i e s  

The only way for the EAS data interpretation 
is the detailed simulation of the primary parti- 
cles strong interactions and cascade development 
in the atmosphere and detectors. The simulation 
trials including detector responce (training sam- 
ples) obtained for different primaries and ener- 
gies are used for physical inference. The training 
samples provide the nonparametric a priori in- 
formation about phenomena under investigation. 
Correspondent to the type of a priori information, 
nonparametric statistical models axe used in the 
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Figure 1. Primary nucleus classification by neu- 
ral, Bayesian and regression methods (simulated 
data) 
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Figure 2. Primary nucleus classification by non- 
parametric regression method: comparison of 
pure simulation data and detector response 

form of a stochastic mechanism, whereby the data 
is generated [12]. 

As local nonparametric models the Bayesian 
decision method [13] and regression method were 
applied to the CORSIKA [14] simulations of 
KASCADE [15] and ANI [12] installations. The 
local models use the neighborhood (in the multi- 
dimensional space of measured EAS parameters) 
information to decide on the particle and energy 
type. The Neural Networks are trained on the 
whole training sample, providing global solutions 
on the expenses of time consuming, complicated 
training strategies [16]. 

In figure 1 these methods are compared in the 
task of classifying multidimensional EAS data 
(number of electrons, muons and shower age were 
used) into 5 categories (proton, alpha, oxygen 
group, silicon group, iron group). Each of 5 con- 
trol samples (1000 independent simulation tri- 
Ms) consists of "pure" particles of the mentioned 
groups and the proportions of their classifications 
to different nucleus groups are presented. 

The results demonstrate rather good consis- 
tency of all nonparametric methods, proving rele- 
vance and power of nonparametric methodology. 
The Bayesian decisions are superior the regres- 
sion methods, as in the later case only one nearest 
neighbor was used. 

3 .  D e t e c t o r  r e s p o n s e  

The results presented in the previous section 
concerned the ideal case of knowing exact num- 
bers of electrons and muons in the EAS. To esti- 
mate the bias due to finite sampling and recon- 
struction errors the detailed detector simulation 
on the basis of the GEANT package was made 
taking into account all shower particles, absorbers 
and active materials, energy deposits, times, trig- 
ger conditions and efficiencies, as well as the elec- 
tronics, digitization of pulseheights, times, etc... 

In the second step the reconstruction programs 
(KRETA) were applied. The EAS core position, 
arrival direction, electron- muon densities, elec- 
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tron and muon numbers from the array, hadron 
information, arrival time distributions in central 
the detector, and many other characteristics are 
calculated. 

In figure 2 the classifications using pure sim- 
ulation and corresponding detector response are 
compared. As expected, the misclassification 
rates increase for realistic experimental situation 
and resolving protons and alpha particles is very 
doubtful, but the overall results are satisfactory 
and the primary identification (especially for pro- 
ton and iron) still remains reliable. 

4. P r i m a r y  e n e r g y  e s t i m a t i o n  
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Figure 3. The accuracy of energy estimation us- 
ing non-parametric regression method and differ- 
ent sets of observables 

As one can see from figure 3 adding the addi- 
tional EAS observables increase significantly the 
accuracy of energy estimation. The accuracies 
are different for different nucleus groups and, as 
expected, better for heavy nuclei. The introduc- 
tion of detector responce deteriorate the accura- 
cies, but the usage of additional parameters (as 

the number of muons in the central detector) can 
improve the situation. 
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