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A B S T R A C T

The proposed local intrinsic dimensionality method (TIDIM algorithm) demonstrates significant potential in 
detecting specific filament-like and globular cluster-like structures. It provides a non-parametric, reproducible, 
and resolution-flexible framework for identifying complex structures within three-dimensional distributions. This 
approach offers a complementary perspective to traditional statistical tools by focusing on local features such as 
voids, filaments, and globular clusters. Additionally, it allows for the reconstruction of discrete tracers using the 
same flexible framework. Its capacity to localize anisotropies and apply TIDIM on a spatial grid makes it 
particularly useful for comparisons with simulations. The Sobol grid-based TIDIM analysis complements galaxy- 
based assessments by enabling the detection of structures in sparsely populated regions.

1. Introduction

Dimensionality estimation methods are crucial in data analysis, 
helping researchers discover the underlying structures in high- 
dimensional datasets. Early approaches, such as Principal Component 
Analysis (PCA, Pearson, 1901), mainly focus on linear dimensionality 
reduction by projecting data onto axes that maximize variance. The 
intrinsic dimensionality is estimated by counting the number of com
ponents needed to explain a certain proportion (usually 95 %) of the 
variance. 

d = smallest integer such that sum(λi) / total variance ≥ threshold 

where λi are the eigenvalues of the covariance matrix.
PCA provides a global estimate; it is sensitive to scaling and cannot 

detect nonlinear structures. Therefore, PCA often fails to identify local 
manifold structures present in real-world datasets. In response to these 
limitations, Grassberger and Procaccia (1983) introduced the correla
tion dimension technique, rooted in fractal geometry, as a method for 
estimating local dimensionality. It is defined via the correlation integral: 

C(r) = (2 /N(N − 1)) number of point pairs with xi − xj < r 

By fitting log(C(r)) vs. log(r), the slope in the linear region gives the 
intrinsic dimension.

Braams (1974) proposed an algorithm that assesses dimensionality 
locally by examining the relationship between the radius of 

neighborhoods and the number of points contained within them, 
enabling the accurate mapping of nonlinear manifolds. Algorithms were 
based on the observation that if a set of points is distributed homoge
neously in an I-dimensional subspace, then the number of neighbors K 
within a radius R from a given origin satisfies the scaling relation: 

K ≈ C ∗ R 

Taking the logarithm of both sides, this becomes: 

log(K) ≈ log(C) + I ∗ log(R)

This suggests that the slope of a linear fit to log(K) vs. log(R) provides 
an estimate of the intrinsic dimension I.

In 1989, A. Chilingarian revised and implemented this methodology 
to enhance the estimation of local dimensionality in empirical datasets 
(Chilingarian, 1992; 1989). His revised version eliminated the 
assumption of strict homogeneity, allowing the method to be applied to 
real-world data, such as high-energy cosmic rays or multiparticle pro
duction on colliders. The TIDIM algorithm was tested and optimized for 
numerical stability and was successfully utilized in high-dimensional 
physics applications, including feature selection.

It assumes that the number of neighboring points within radius R of a 
point O in a d-dimensional subspace scales as: 

K(R) ≈ C ∗ Rd→log(K) ≈ log(C) + d ∗ log(R)

The slope d is determined via least-squares fitting of log(K) versus log 
(R) using k-nearest neighbors. The global dimension is obtained by 
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taking the distribution median of the local dimensionality estimates at 
points uniformly covering the initial manifold. Additionally, the TIDIM 
algorithm was used to map the data points in the initial feature space to 
a lower-dimensional space, where most of the population is grouped due 
to conservation laws and other factors.

Beyond dimension estimation, a range of methods aim to reveal the 
actual coordinates of lower-dimensional manifolds embedded in high- 
dimensional space. These include: 

• Isomap (Tenenbaum et al., 2000): Combines geodesic distances with 
classical MDS to recover global manifold structure. Suitable for 
smoothly curved manifolds.

• Locally Linear Embedding (LLE, Roweis and Saul, 2000) preserves 
local neighborhood relationships using linear weights, thereby 
emphasizing local structure.

• Laplacian Eigenmaps: Uses the graph Laplacian to preserve local 
distances. Effective for discovering low-dimensional embeddings.

• Diffusion Maps (Coifman and Lafon, 2006): Constructs a diffusion 
process on the data graph and embeds using eigenvectors of the 
diffusion operator.

• Autoencoders (Hinton and Salakhutdinov 2006): Neural networks 
that compress input into a low-dimensional bottleneck and recon
struct it, learning manifold coordinates.

Each method has strengths and limitations. Isomap and diffusion 
maps capture global structure, while LLE and Laplacian Eigenmaps 
emphasize local geometry. Autoencoders provide flexible, learnable 
embeddings that scale to complex data and support out-of-sample 
mapping. However, none of these techniques recover analytic forms of 
the manifold, and most require dense, well-sampled data.

We examine the TIDIM method through extensive simulation ex
periments, comparing it directly with PCA and correlation dimension
ality methods. The focus is on situations where local structure is 
essential, and where global methods, such as PCA, fall short.

The final illustration of the TIDIM algorithm involves analyzing 
galaxy distribution in the nearby Universe (z < 0.2) using data from the 
Sloan Digital Sky Survey. We also test TIDIM on Gaussian and real-world 
datasets (Digits, Wine, and Breast Cancer). We evaluate TIDIM through 
extensive experiments, comparing it directly with PCA and assessing its 
usefulness alongside the above nonlinear manifold learning techniques. 
The focus is on situations where local structure is crucial and global 
methods, such as PCA, are insufficient. Each section provides method
ological details, comparative analysis, and visual illustrations that 
demonstrate the advantages of TIDIM for local manifold detection and 
mapping, particularly in complex and nonlinear contexts.

2. Synthetic Gaussian dataset

We generated 10,000 points in a 10-dimensional space, where 3 di
mensions were sampled from N (0, 1) and the remaining 7 dimensions 
from N(0, 0.01), resulting in an effective intrinsic dimension of 3. Yield 
global dimensionality values from 2.9803 to 3.0073, see Table 1. PCA 
identified three significant components, accounting for 95 % of the 
variance. The corrected correlation dimension, computed on a subset of 
1000 points, yielded an estimate of approximately 3.03, see Table 2.

3. Real-world dataset analysis

Table 3 presents a comparison of two local intrinsic dimensionality 
estimation methods—TIDIM and Correlation dimensionality, and global 
estimate PCA—applied to three real-world datasets: Digits (64-dimen
sional data), Wine (13-dimensional data), and Breast Cancer (30- 
dimensional data). TIDIM estimates are computed using k = 30 neigh
bors, while PCA estimates are based on the number of components 
required to explain 95 % of the variance

3.1. Particle interaction simulation (3N-Dimensional space)

fParticle collisions are usually described as a distribution in 3N- 
dimensional impulse space. However, particles born via short-lived 
resonances, and 3 N impulse space can be shrunk to lower dimensions. 
The modeling scheme includes production of short-lived resonances, i. 
e., correlated groups that decay into multiple particles (Chilingarian and 
Harutunyan, 1989).

Let RRR be the number of resonances per event, each resonance 
producing 2–3 final particles. These particles are momentum-correlated, 
e.g., their momenta sum to the resonance momentum. The remaining 
particles are uncorrelated and drawn from a 3D Gaussian distribution. 
For each event: 

• Generate RRR random resonance 3-momenta.

Table 1 
Summary Table of global dimensionality estimates(k = 5 to 500).

k (Neighbors) Mean Estimated Dimension Variance

5 3.2496 5.4115
10 2.9363 1.5813
15 2.8988 0.9829
20 2.8931 0.7308
25 2.8971 0.5857
30 2.9024 0.4919
35 2.9083 0.4278
40 2.9144 0.3811
45 2.9203 0.3455
50 2.9261 0.3176
55 2.9313 0.2941
60 2.9361 0.2745
65 2.9405 0.2579
70 2.9448 0.2440
75 2.9488 0.2321
80 2.9526 0.2217
85 2.9561 0.2124
90 2.9595 0.2042
95 2.9626 0.1969
100 2.9656 0.1903
130 2.9803 0.1619
160 2.9916 0.1444
190 3.0003 0.1329
220 3.0073 0.1252
300 3.0204 0.1143
400 3.0304 0.1096
500 3.0364 0.1087

Table 2 
Comparisons of dimensionality estimation methods(k = 300).

Method Estimated Dimension ±
MSD

Comment

TIDIM (k = 300) 3.043 ± 0.0002 Local estimator
Correlation Dimension (k =

300)
3.030 ± 0.0001 Fractal estimator

PCA (95 % variance) 3 Global linear 
structure

Table 3 
Comparison of dimensionality estimation for the real-world data.

Dataset TIDIM Mean 
± MSD

PCA Dim 
(95 %)

PCA Total 
Variance

Correlation Dim 
± MSD

Digits (64) 6.81 ±
0.0036

29 95 % 5.81 ± 0.0006

Wine (13) 1.40 ±
0.0014

1 95 % 1.34 ± 0.0003

Breast 
Cancer 
(30)

2.45 ±
0.0008

1 95 % 2.01 ± 0.0002
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• For each resonance: Split its 3-momentum into 2–3 correlated frag
ments with small random deviations.

• N = 10 particles
• R = 3 resonances per event
• 2–3 particles per resonance
• 10,000 events

Each event will be represented as a vector in R30 (10 × 3), but the 
effective dimensionality will be ~15–20 due to correlations between 
born particles.

Using the TIDIM algorithm, we find the mean estimated dimension to 
be approximately 12.07 with a variance of about 0.36. The TIDIM his
togram shows a clear peak around 12, indicating a reduction in 
dimensionality from the original 30. Additionally, the PCA cumulative 
variance plot demonstrates that roughly 12 components are sufficient to 
account for 95 % of the data structure. Thus, PCA (a global linear 
method) confirms TIDIM results.

3.2. Astrophysical data analysis. Local dimensionality estimation of the 
SDSS galaxy sample

We use a random sample of 10,000 spectroscopically confirmed 
galaxies from the Sloan Digital Sky Survey (SDSS, 2020), selected in the 
redshift range z = 0.01 to 0.2. The dataset includes Right Ascension 
(RA), Declination (Dec), and redshift (z) values for each galaxy. The 
TIDIM algorithm was used to evaluate the intrinsic dimensionality of the 
spatial distribution of galaxies. In Fig. 1, we show the distributions of 
these parameters in the selected data sample.

In Fig. 2, we present the map of local dimensionalities estimated for 
the 10,000 points across the RA-Dec plot at the galaxy location points. 
The plot contains several empty areas due to the non-uniformity of the 
selected galaxy sample shown in Fig. 1.

We use a subsample of SDSS galaxies in the region with Right As
cension between 130◦ and 230◦, and Declination between 10◦ and 30◦

Dimensionality is estimated using the median of local slope estimates 
over the full k-range from 7 to 51. In Fig. 3, we show the histogram of the 
obtained intrinsic dimensionalities. We pay special attention to the tails 
of the histogram (d > 3.5 and d < 1) to gain insight into the special 
conditions surrounding galaxies with extreme estimates of 
dimensionality.

Galaxies with high estimated local dimension are highlighted, and 
the spatial distribution of dimensionality is visualized. We compare the 
spatial distribution and inferred environment of two extreme classes of 
galaxies from the SDSS subsample with RA 130–230◦ and Dec 10–30◦

Local intrinsic dimensionality was estimated using the median slope 
across k-nearest neighbor distances (k = 7 to 51). The analysis focuses on 
two categories: 1) galaxies with TIDIM > 3.5 and 2) galaxies with TIDIM 
< 1.

In Fig. 4, we observe that high-dimensional galaxies (d > 3.5) are 
distributed in underdense regions, consistent with the presence of cos
mic voids. Their sparse local neighborhoods yield higher local slope 

estimates in the TIDIM algorithm. This class includes potential void 
galaxies, where neighbor sparsity inflates the dimensionality estimate.

Galaxies with TIDIM < 1 shown in Fig. 5 are concentrated in narrow 
filaments (Tempel et al. 2014) or the cores of superclusters. Their local 
geometry is highly constrained, resulting in nearly linear arrangements 
of points. These galaxies may be embedded in known structures such as 
the Coma or Hercules Superclusters. Their placement within dense en
vironments suggests physical proximity to cosmic filaments or galaxy 
walls.

Figs. 4–5 illustrate the analysis of the galaxy neighborhood in the 
Universe; however, for a comprehensive galaxy density analysis of the 
entire Universe, we need to populate the whole space with test points, 
regardless of whether galaxies are present at those points or not. For this, 
we applied the TIDIM estimator to a uniform Sobol grid (Sobol, 1979) of 
5000 quasi-random points in the RA–Dec plane (RA: 130◦–230◦, Dec: 
10◦–30◦), using the distribution of real SDSS galaxies in the same region. 
Each grid point was analyzed by computing the local slope of log–log 
neighbor counts. This time, we observe many more events in the right 
tail of the TIDIM estimates distribution, with 48 instead of 1 having d >
4 (void-like structure). In contrast, the number of events with d < 1 
(filament-like structure) shrinks from 30 to 2, proving that the Universe 
is mostly empty, and galaxies cover a very small share of the Universe’s 
entire volume.

The distribution of local dimensionality values across the uniform 
grid shows a clear bias toward higher local dimension in sparsely 
populated regions. Compared to galaxy-based estimates, the Sobol grid 
method identifies void-like zones (TIDIM > 4) more frequently.. This 
reflects the grid’s independence from galaxy clustering and confirms the 
method’s utility in tracing large-scale underdense environments. Thus, 
the Sobol grid-based local dimensionality analysis complements galaxy- 
based evaluations by enabling the detection of structures in sparsely 
populated or unsampled regions. It provides a physically interpretable 
and reproducible tool for mapping structures and identifying voids in 
the Universe.

3.3. Intrinsic dimensionality-based detection of discrete structures in 3D 
spaces

Understanding the structural composition of the universe—from 
filamentary bridges in the cosmic web to compact globular clus
ters—requires robust analytical tools capable of uncovering such 
structures without requiring prior labeling or clustering assumptions.

In this section, we present a comparative study of structure detection 
using the TIDIM method, which estimates local intrinsic dimension from 
the scaling behavior of point distributions. The TIDIM framework is 
applied to both simulated globular clusters and cosmic filaments 
superimposed on a uniform background. We also formulate decision 
rules to evaluate classification accuracy.

The TIDIM method estimates local dimensionality at each point by 
analyzing how the neighborhood volume scales with distance. Specif
ically, for each point: 

Fig. 1. Local Dimensionality Analysis of SDSS Galaxies in Selected Sky Region.
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- A range of nearest-neighbor sizes K ∈ {20, 30, 40, 50, 60} or {100, 
400, 600} is used.

- For each K, the log-log slope of distance vs. cumulative neighbor 
count is computed.

- The inverse slope provides a local ID estimate.
- The final Ti-DIM value is taken as the median across K.

This ensemble approach smooths fluctuations and enhances stability 
in regions of varying density.

The simulation setup for the globular clusters includes 1000 back
ground points uniformly distributed within the unit cube [0, 1]³, along 
with 10 globular clusters, each containing a randomly chosen number of 
points (between 20 and 30) distributed normally around a randomly 
selected center. The cluster points are tightly concentrated using a 
Gaussian distribution with a standard deviation of 0.01. We used a 
simple classification rule: points with TIDIM < 1.5 were considered 

cluster candidates. Ten independent simulation trials were performed, 
and for each, the performance of the classification scheme was evalu
ated. Clusters were matched using spatial overlap criteria and nearest- 
neighbor linkage, and statistical measures were computed across the 
10 randomized simulation trials. Fig. 6 shows the classification of 
clusters for one of the ten independent simulation trials. We first apply 
decision rules for each point based on the estimated local dimension
ality. Then, detected clusters are matched to the true simulated clusters 
by requiring that at least 6 points from a detected group overlap with the 
ground-truth cluster.

Performance Evaluation:
Across 10 independent trials containing 10 globular clusters each:
True positives (mean detected clusters): 9.8 ± 0.42
False negatives (mean missed clusters): 0.1 ± 0.32
False positives (erroneously accepted): 0.4 ± 0.49
The results confirm high sensitivity of TIDIM, with minimal false 

Fig. 2. Two-Dimensional Sky Map Colored by Local TIDIM.

Fig. 3. Local dimensionality histogram of SDSS galaxies in selected sky region.
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positives and consistent full-cluster detection across multiple trials. This 
affirms TIDIM as a reliable tool for identifying compact structures.

In a more complex scenario for detecting linear structures, ten non- 
intersecting filamentary structures (each with 10–20 points) were 
embedded in a background of 5000 uniformly distributed points. The 
filaments were extended linearly and sparsely populated. A point was 
classified as part of a filament if at least 4 of its 10 nearest neighbors had 
TIDIM < 1.5, and if their average inter-point distance was < 0.0293. 
This combined dimensionality and proximity criterion was crucial for 
capturing the linearity and compactness of filamentary structures 
(Fig. 7).

Across 10 independent trials containing 10 filaments each:
True positives (TP, mean detected filaments): 8.4 ± 0.84
False negatives (FN, mean missed filaments): 0.1 ± 0.32

False positives (FP, erroneously accepted): 1.3 ± 0.46
Although slightly less accurate than for compact clusters, the 

detection rule proved effective for identifying elongated 1D filaments 
amid larger noise.

The used structure detection schemes provide high detection effi
ciency, requiring no a priori clustering model, making TIDIM a robust 
unsupervised method for structure recovery in noisy, high-dimensional 
astrophysical datasets. False positives remained low in both compact 
and extended scenarios, suggesting the method’s robustness against 
background noise.

4. Discussion and conclusions

The intrinsic dimensionality method provides a robust, local, and 

Fig. 4. High TIDIM Galaxies Marked by red and rose Asterisks on the RA–DEC Galaxy Map.

Fig. 5. Low-dimensionality galaxies (TIDIM < 1) are indicated by blue asterisks on the RA–DEC galaxy map.
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unsupervised approach to uncovering geometrical structures in noisy 3D 
environments. Its successful use on synthetic Gaussian data, as well as 
real-world problems, including both compact globular clusters and 
sparse filaments, demonstrates its versatility across different contexts. 
Key advantages include: 

- No prior assumptions about shape or size.
- Sensitivity to both dense and sparse structures.
- Adjustable decision rules that incorporate both dimensionality and 

spatial proximity.

These features make TIDIM a potentially valuable tool for astro
physical data analysis, particularly in characterizing the complex ge
ometry of large-scale galaxy distributions.

Unlike PCA and other global linear methods, TIDIM provides insights 
into how dimensionality varies across different regions of a dataset, 
which is essential for feature engineering and anomaly detection. 
TIDIM’s ability to handle both global and local nonlinearities makes it 
well-suited for complex scientific data such as in particle physics, ge
nomics, and astrophysics. In practical use, TIDIM offers not only the 
estimated dimensionality but also a framework for localizing and 
interpreting the geometric structure of the underlying manifold. The 
TIDIM algorithm enables estimating the number of degrees of freedom 
in a small neighborhood, mapping the local geometry of the manifold 
embedded in high-dimensional space, and detecting structures such as 

folds, branches, resonances, filaments, or jets that lie on curved or 
nonlinear submanifolds.

Although many methods exist for analyzing large-scale structure in 
the universe, the TIDIM approach offers a novel and practical way to 
quantify local geometric complexity in galaxy distributions. Its robust
ness to noise and independence from prior physical assumptions make it 
a promising tool for structure recovery in the era of large-scale galaxy 
surveys.

TIDIM algorithm aligns with ideas found in modern structure-finding 
and field reconstruction approaches. Key parallels include: 

- The Bayesian Origin Reconstruction from Galaxies (BORG, Jasche 
and Wandelt, 2013) algorithm, which infers the density field from 
sparse sampling;

- Voronoi and Delaunay tessellation-based methods for void and wall 
detection (Van de Weygaert and Schaap, 2009);

- Regular-grid KDE and spline-based smoothing used in simulations to 
interpolate mass or galaxy distributions (Silverman, 1986);

- Machine learning latent-space embeddings that implicitly fill 
configuration space (Ravanbakhsh et al., 2017).

However, these methods typically require dense sampling or a 
physical model prior (e.g., gravitational dynamics in BORG). At the 
same time, TIDIM offers a purely data-driven and non-parametric 
alternative that can operate in sparse or observationally incomplete 

Fig. 6. Three-panel visualization of one of 10 simulation trials. Left: The initial 3D distribution of points. Black dots represent 1000 uniformly distributed background 
points. Green dots denote the 10 injected compact globular clusters (each 20–30 points). Center: Histogram of TIDIM values for background (gray) and cluster (green) 
points. The red-shaded area highlights the detection threshold TIDIM < 1.5. Right: Final detection result using the TIDIM-based rule. Green points are true positives 
(cluster points correctly identified), red points are false positives (background points incorrectly identified as clusters), blue points are false negatives (missed cluster 
points), and gray points are true negatives (correctly identified background).

Fig. 7. Three-panel visualization of one simulation trial. Left: 3D view of background with superimposed filaments. Center: Histogram of TIDIM values for back
ground and filament points. Right panel: Green = TP, Red = FP, Blue = FN, Gray = TN.
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settings.
We demonstrate intrinsic dimensionality methods across various 

problems, including astrophysical data and simulated astronomical 
structures. However, additional work with astronomical catalogs of 
observational and simulated data is necessary to endorse these methods 
for astronomical applications fully. Only by analyzing astronomical data 
sets and comparing results with established methods can new techniques 
be reliably integrated into astrophysical research.
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