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Abstract 

The determination of elemental composition of Primary Cosmic Rays in the energy range 10’s-10’7 eV is still an 
unsolved problem. Modern surface installation registering many characteristics of Extensive Air Shower (EAS) initiated 
in atmosphere by incident particles provide the possibility to handle data on an event-by-event basis and obtain results 
with reliability comparable with collider experiments. 

We use Bayesian decision making and neural approaches for data classification into multiple categories. The Parzen 
window method was used for multivariate density estimation along with evolutionary algorithms for net training. 

The accuracies of reconstructed proportion of different nucleus in primary flux were estimated. Both methods provide 
close results proving convergence to minimal achievable Bayesian risk. 

1. Introduction 

The ambiguity in interpreting the results of experi- 
ments with cosmic rays is connected with both significant 
gaps in our knowledge of the characteristics of had- 
ron-nuclear interactions at superaccelerator energies 
and indefiniteness of the primary cosmic ray composi- 
tion, as well as with the strong fluctuations of all the 
shower parameters. The extra difficulties are due to 
indirect experiments and hence, due to the use of Monte- 
Carlo simulations of development and detection of differ- 
ent components of nuclear electromagnetic cascades. 

Only a simultaneous measurement of a large number 
of independent parameters in each individual event can 
yield reliable information to reconstruct the primary 
particle origin and its energetic characteristics as well as 
the peculiarities of strong interaction in the upper atmos- 
phere. 

To make more reliable and significant conclusions 
about the investigated physical phenomenon we develop 
a unified theory of statistical inference, based on non- 
parametric models, in which various nonparametric ap- 
proaches (density estimation, Bayesian decision making, 
error rate estimation, feature extraction, sample control 
during handling, neural net models, etc.) are imple- 
mented. 
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The AN1 program package [l] for multidimensional 
data analysis and non-parametric statistical inference 
was used for estimating possible accuracies of primary 
reconstruction using the simulation data obtain by 
CORSIKA [Z] code. 

2. Bayesian and neural decision rules 

The Bayesian approach in classifying a mixture of 
distribution consists in the minimization of the losses due 
to incorrect classification [3]. Therefore, the Bayesian 
decision rule takes the form (a simple loss function is 
assumed) 

A = argmaxi {j(Ai/U)), i = 1, ,L, (1) 

where the space of possible states of nature 
A = (p, c1,0, N, Fe) consists of 5 groups of primary nuc- 
leous, u is a multivariate measurement and i(Ai/o) are 
nonparametric estimates of a posterior densities, conne- 
cted with conditional ones (obtained from simulation) by 
Bayes theorem: 

BW4 = 
piB(“i/Ai) 

P(U) 

Conditional densities are estimated by training samples 
using Parzen’s method with automatic kernel width ad- 
aptation. In this method some probability density values 
are calculated which correspond to different values of 
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method parameters. Then the sequence obtained is or- 
dered and the median of this sequence is chosen as final 

estimate. The probability density is estimated by 

where rl is the feature space dimensionality, M is the 
number of events in the ith TS class, I’~ is the distance to 

the jth neighbour in the Mahalanobismetric: 

I‘, = (I. - ~r;)‘R~~‘(r - II;), (4) 

where R is a sampling covariance matrix of the class to 
which u belongs. M’; are the event weight, h is width of the 

kernel. 
The Neural decision making is another nonparametric 

technique, mapping the multidimensional measurements 
into one-dimensional “decision” (O-l) interval [4]. The 
“target” output OUT l”““(k) for events of the kth cate- 
gory events (we restrict ourselves to networks with 
a single output node) is determined to maximize the shift 
of the alternative classes from each other: 

O(_]T’“‘““(k) = ?$-, !i=l,k, (5) 

where K is the total number of classes. 5 in our case. The 
actual events classification is performed by comparing 
the obtained output value with the predefined intervals in 
the (0, I) interval. We expect that the data flow passing 
through the trained net will be divided m 5 clusters 
concentrated in the different regions of the (0, I ) interval 

(set Fig. I). 
This neural decision rule is also a Bayesian one, there- 

fore the output signal of a properly trained feedforward 
neural net is an estimate of the a pohteriori probability 

density [5]. 
The expected minimal classification errors caused by 

the overlap of the distributions (the Bayes error) depends 

on the discriminative power of the feature subset selected 
and on the learning power. By moving the decision 
points along the (0. I ) interval we can change the relation 
between the errors of the first and second kind (the 
position of the decision points is the neural analog of the 
loss function in the Bayesian approach). 
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Fig. 1. N.N. classification of EAS registered at 3250 m a.s.1. (CORSIKA M.C.) in the energy range 10’J IO’” cV 
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Fig. 2. N.N. classification of EAS registered at 3250 m a.s.1. (CORSIKA MC) in the energy range 1014- lOI eV. (0) Neural Net. (C) 

Bayes. 

3. Results Acknowledgements 

The primary nucleus estimation was done for 
ANI experiment now operating on Aragatz mountain 
research station of Yerevan Physics Institute, 
Armenia. The experimental complex consists of 
a ground-based shower array, EAS muon detectors 
installed in the underground hall and a precise elec- 
tron density detector. The location of station (3200m 
above sea level) permits the accurate estimation of the 
energy of a primary particle [6], also providing oppor- 
tunity to obtain rather good accuracies of primary-type 
estimation. 

The CORSIKA simulation were used for training of 
Bayesian and Neural algorithms. From the purity- 
efficiency plots (Fig. 2), one can see the good agree- 
ment of both nonparametric approaches. Different points 
were obtained by altering the a priori probabilities 
in Bayesian method and decision points-in neural 
method. 

We wish to acknowledge the members of the KAS- 
CADE collaborations for the use of the CORSIKA EAS 
simulation program. 

We thank Prof. Dr. H. Rebel, Dr. J. Knapp and 
M. Roth for valuable remarks concerning new methods 
of data analysis. This work was partly supported by the 
research grant No. 94694 by the Armenian government. 
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