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Application of stochastic resonance in gravitational-wave interferometer
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We investigate a novel approach which improves the sensitivity of a gravitational-wave interferometer
due to the phenomenon of stochastic resonance (SR), performing in a nonlinear cavity (NC). The NC is
installed at the output of the interferometer before the photodetector so that the optical signal emerging
from the interferometer passes through the NC. Under appropriate circumstances, a specific trans-
formation of the noisy signal inside the NC takes place, which results in the increase of the output
signal-to-noise ratio (SNR). As a result, the noisy optical signal of the interferometer becomes less noisy
after passing through the NC. The improvement of SNR is especially effective in the bistable NC for
wideband (several hundred Hz) detection, when the chirp gravitational-wave signal is detected. Then, for
an input SNR of �0:05, the output SNR can be increased up to �0:5. When the detection bandwidth is
narrowed, the SR mechanism gradually fades out, and the SNR gain tends to 1. The SNR gain also tends to
1 when the NC is transformed to a linear cavity. Proposed enhancement of the SNR due to SR is not
dependent on noise type, which dominates in the interferometer. Particularly, the proposed approach is
capable of increasing the SNR at a given amplitude of displacement noise.
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I. INTRODUCTION

A number of ground-based laser Michelson interferome-
ters are now searching for gravitational waves from differ-
ent astrophysical objects [1]. Detection of a gravitational
wave (GW) is expected to be one of the most exciting
scientific results in the near future. It will have important
applications both for astronomy, where new information
about astrophysical objects will be obtained, and for fun-
damental physics, where some aspects of general relativity
theory can be tested. Among the most likely detectable
sources of the GWs are binary systems containing neutron
stars and/or black holes [2]. Regardless of the specific
configuration, all GW interferometers use the principle of
Michelson interferometer to detect the changes �L �
L1 � L2 of the length L in the two perpendicular arm
lengths L1 and L2. The first generation of GW interfer-
ometers having strain sensitivity �L=L� 10�21 is pre-
dicted to detect only large gravitational events. The
second generation of detectors, such as the advanced
Laser Interferometer Gravitational-Wave Observatory
(LIGO) [3] is expected to reach an order of higher sensi-
tivity in the frequency range of several hundred Hz. These
instruments will employ higher power lasers, a signal
recycling technique, more advanced core optics, and a
suspension system. Along with the investigations of these
problems, numerous theoretical studies have been carried
out suggesting novel approaches and principles. These
include the squeezed light [4], the quantum demolition
technique [5], the optomechanical coupling technique
[6], the Sagnac interferometer [7], white-light cavities
[8], stochastic resonance (SR) [9], and more.

The concept of stochastic resonance was originally in-
troduced in 1981 [10], and since then it has continuously
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attracted growing attention. SR has been studied in bio-
logical systems, information theory, chemical reactions,
etc., and due to its simplicity and robustness it has estab-
lished itself as a large area in noise research. Stochastic
resonance is a specific transformation of a noisy signal in a
nonlinear system, with subthreshold inputs, when output
signal content is improved by the assistance of noise. As it
is known, output signal-to-noise ratio (SNR) of a linear
system decreases when the input noise increases. However,
in a nonlinear bistable system the opposite relationship can
be observed, i.e., the addition of some noise in the input
can enhance output SNR, rather than reduce it. Such
enhancement takes place in some interval of input noise
amplitudes. For low noise amplitudes, the signal does not
cause the device to cross the threshold, because so little
signal is passed through it as it passes through the linear
system. For large noise amplitudes the influence of bista-
bility is not essential, and again the output SNR is close to
the input one. However, for moderate amplitudes, the noise
allows the signal to cross the threshold coherently to signal
time variations, and as a result the output signal becomes
more coherent to the input signal, and the output SNR
increases. Thus, the response of the system where the SR
mechanism is performed will exhibit resonancelike behav-
ior versus the amplitude of input signal’s noise, hence the
name ‘‘stochastic resonance.’’

In the present paper we study the application of SR in a
GW interferometer for improving sensitivity. To employ
the SR phenomenon, one needs to have a nonlinear system
where the noisy signal would be transformed and im-
proved. Earlier in [9] we considered this problem; how-
ever, the proposed configuration of the interferometer was
not suitable for experiments. In [9] we suggested that the
optical nonlinear medium be inserted in the interferometer
-1 © 2006 The American Physical Society
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arm cavities to turn them into nonlinear cavities and to
trigger SR. But such a scheme has the following draw-
backs: (i) because of the high power circulating in the arm
cavities, it would be difficult to maintain the nonlinear
medium in a stable state, and (ii) it would be difficult to
provide identical nonlinear parameters for two arm cav-
ities. The scheme suffered also from the necessity of using
a special white-light cavity to relax the tight requirements
of laser frequency stability.

Here, we consider another, simpler configuration, where
an additional nonlinear cavity (NC) is installed in the
interferometer output before the photodetector. A sketch
of the proposed configuration is shown in Fig. 1. The
function of the NC is to improve the SNR of the noisy
signal passing through it by the SR mechanism. This
scheme is easy to construct in existing ground based inter-
ferometers. We present in this paper the results of a theo-
retical study of such an interferometer. The main
motivation of this work was to attract the attention of
GW interferometery experts to the SR phenomenon by
showing in a simple scheme the feasibility of a SR appli-
cation for upgrading GW interferometers.

Section II contains the calculations of NC transmittance
and the SNR of the input and output noisy signals. In
Sec. III, the SNR gain is studied for the sinusoidal GW
signal, and in Sec. IV the SNR gain is studied for the chirp
GW signal of the binary system.
BS
PRM

PD

Eout

PBS, EBSFrom Laser 

Ein

NC 

FIG. 1. Schematic of the proposed interferometer’s configura-
tion. PRM is the power recycling mirror, BS is the beam splitter,
NC is the nonlinear cavity, PD is the photodetector, PBS and
EBS are the power and amplitude of electric field incident on
the beam splitter, Ein is the amplitude of the beam incident on
the NC, and Eout is the amplitude of the beam emerging on the
NC.
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II. THE TRANSMITTIVITY OF THE NONLINEAR
CAVITY

To investigate the possibility of the NC to improve the
SNR of the noisy signal, one needs to derive the relation-
ship between the output (Eout) and input (Ein) signal am-
plitudes. We will use the appropriate analytical approach,
presented in [9] and based on coupled waves equations
[11]. Suppose that the NC is formed by two mirrors placed
at z � 0 and z � D. Each mirror has intensity reflection
and absorption coefficients r2 and w2 respectively, so that
intensity transmittivity of each mirror is t2 � 1� r2 � w2.
Region z1 < z < z2 inside the NC is filled with a nonlinear
medium with refractive index n � n0 � n2jEmj

2, where n0

is the background refractive index, n2 is the nonlinear
coefficient, and Em is the amplitude of electric field of
the waves inside the nonlinear medium. The output beam
of the interferometer, having power Pin and amplitude of
electric field Ein is incident on the NC. This beam can be
described as a quasimonochromatic plane wave, with the
electric field given as Ein exp�i�kz� 2�flast��, where k �
2�flas=c is the wave number, flas is the laser frequency,
and c is the speed of light in vacuum. The electric field
inside the NC is written as

C1 exp�ikz� � C2 exp��ikz� in 0< z< z1;

D1 exp�ikz� �D2 exp��ikz� in z2 < z<D;

U�z� exp�iknz� � V�z� exp�iknz� in z1 < z< z2:

(1)

Here C1, C2, D1, and D2 are constant complex amplitudes,
andU�z� and V�z� are slowly varying amplitudes inside the
nonlinear medium, which obey the coupled waves equa-
tions [11]

iU0�z� � kn2U�z��jU�z�j
2 � 2jV�z�j2� � 0;

iV0�z� � kn2U�z��jV�z�j2 � 2jU�z�j2� � 0:
(2)

The solutions of (2) can be presented as

U�z� � u exp�i��z� �0��;

V�z� � v exp�i��z� �0��;
(3)

where � � kn2�u
2 � 2v2�, � � �kn2�v

2 � 2u2�, and u
and v are real positive constants.

We have four boundary conditions for the electric and
magnetic field at nonlinear medium boundaries, and four
equations for reflected and transmitted amplitudes at z � 0
and z � D. Thus a system of eight complex equations is
formed, which determines the amplitude of the electric
field inside and outside the NC.

After appropriate transformations analogously to [9], the
following equation connecting the output Eout and input
Ein amplitudes is obtained:

�2E6
out � 2��t2E4

out � ��
2 � t4�t4E2

out � 4t8E2
in � 0; (4)

where � � 6�d�1� r2�n2flas=c, d � z2 � z1 is the thick-
-2
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FIG. 2. Output amplitude of the light passing through the NC
versus the input amplitude. D � 10 cm, d � 1 cm, n2 �
10�13 �m=V�2, r � 0:99, and E0 � 63:9054261 V=m.
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ness of the nonlinear medium, � � 4�D�flas � fcav�=c,
and fcav � 2�mc=D (m is an integer) is the resonance
frequency of the empty cavity, closest to the laser
frequency.

Substituting in (4) a new variable Y as

Eout �

�������������������
Y �

2t2�
3�

s
; (5)

we come to the cubic equation

Y3 � pY � q � 0; (6)

with coefficients

p �
t4�3t4 � �2�

3�2 ;

q � �
2t6����2 � 9t2� � 54t2�E2

in�

27�3 :

(7)

The solutions of Eq. (6) are given by Cardano’s formula

Y1 � a� b; Y2 �
a� b

2
� i

���
3
p a� b

2
;

Y3 �
a� b

2
� i

���
3
p a� b

2
;

(8)

where

a �
����������������������
�
q
2
�

����
Q

p
3

r
; b �

����������������������
�
q
2
�

����
Q

p
3

r
;

Q �
�
p
3

�
3
�

�
q
2

�
2
:

(9)

It can be checked that Q> 0, so Y1 is always real, whereas
Y2 and Y3 are real only if p < 0 and E1 <Ein <E2, where

E1 �
�

2t4

���������������������������������������������
q�

4t8E2
in

�2 �

�������������
�

4p3

27

svuut
;

E2 �
�

2t4

���������������������������������������������
q�

4t8E2
in

�2 �

�������������
�

4p3

27

svuut
:

(10)

E1 and E2 are defined as the lower and upper thresholds of
bistable cavity, respectively, and E0 � �E1 � E2�=2.

If we define f0 � fcav � 31=2t2c=4�D, then p> � 0 is
equivalent to flas> � f0. In this case Eout is described only
by the solution Y1, being a single-value function of Ein [see
Figs. 2(a) and 2(b)]. However if flas < f0 and E1 <Ein <
E2, the Eout becomes bistable, which means that at a given
input amplitude Ein, the Eout can get two different values,
either in the upper or the lower branches [see Fig. 2(c)]. In
this case Eout is described by both solutions Y1 and Y2,
which form together upper and lower branches. This be-
havior of Eout has been observed in experiments [12].
Notice that the third solution Y3 describes the middle
branch—shown in Fig. 2(c) by the dashed line. This is
the unstable solution, so Eout is never observed on the
122003
middle branch. The value of Eout hops from the lower
branch to the upper one and vise versa as shown in
Fig. 2(c), when Ein varies with an amplitude larger than
the bistability interval E2 � E1. If Eout initially lies say on
the lower branch, it remains there until Ein crosses the
upper threshold E2. Then Eout hops to the upper branch
and remains there until Ein crosses the lower threshold E1.
Thus, the typical hysteresis phenomenon in the Eout versus
Ein relationship is established if f0 > flas. In order to act
effectively, the SR mechanism should have Ein varying
within bistability interval E1 . . .E2. However, as it is
known the GW interferometers work in the dark fringe
regime, i.e. Ein � 0 in the absence of a GW induced signal.
Hence we assume here that in the absence of a GW induced
signal, Ein has a constant mean value Emean. This can be
provided by a small shift of the beam splitter position or by
extracting some portion of the laser beam and directing it
to the NC along with the Ein. We assume that Emean �
E0 � �E1 � E2�=2. Under the action of GW with the strain
h�t� the length of one cavity changes on �L�t� � h�t�L,
while the length of another cavity changes on ��L�t�.
These changes produce a phase shift ���t� between the
two beams reflected from arm cavities. In the result, Ein

becomes

Ein � E0 � �Ein�t�;

�Ein�t� � �EGW�t� �
EBS

2
���t�;

���t� � 16F
L
�

1���������������������������
1� �4����2

p �L�t�
L

:

(11)

where EBS is the amplitude of the beam incident on the
beam splitter, F � ��r1r2�

1=2=�1� r1r2� is the arm cavity
finesse, and r1, r2 are amplitude reflection coefficients of
-3
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arm cavity input and rear mirrors. � � c=flas is the wave-
length of laser light, � is GW frequency, � � 2FL=c is the
arm cavity storage time, and �L�t� is the change of arm
cavity length L. Taking into account also the noise of the
interferometer, the expression for �Ein�t� is written as

�Ein�t� � �EGW�t� � 	in�t�; (12)

where 	in�t� is the noise signal emerging from the interfer-
ometer and incident on the NC. This signal contains all
components of the interferometer noise, including dis-
placement noise, shot noise, and photon pressure noise.

To derive the SNR of Ein�t�, one should calculate sepa-
rately the spectrum Sin�f� of signal� noise and the spec-
trum Nin�f� of noise as the following (the constant E0 can
be omitted in calculations):

Sin�f� �
Z t2

t1
�Ein�t� exp�2�ift�dt;

Nin�f� �
Z t2

t1
	in�t� exp�2�ift�dt;

(13)

where t2 � t1 is the duration of the GW signal.
Then the input SNR, i.e. the SNR of a signal emerging

interferometer and incident on the NC is determined as

SNR in �

��������
Rf2
f1
�Sin�f� � Nin�f��dfRf2

f1
Nin�f�df

��������2
; (14)

where f2 � f1 is the detection bandwidth.
An analogous equation is written for the output SNR, i.e.

the SNR of a signal emerging on the NC:

SNR out �

��������
Rf2
f1
�Sout�f� � Nout�f��dfRf2

f1
Nout�f�df

��������2
; (15)

where

Sout�f� �
Z t2

t1
Eout�t� exp�2�ift�dt;

Nout�f� �
Z t2

t1
	out�t� exp�2�ift�dt;

(16)

and 	out�t� is the time variation of the noise amplitude at
the output of the NC. It is derived from 	in�t� by the same
equations which compute Eout versus Ein.

SNR gain G of the noisy signal passing through the NC
is therefore

G �
SNRout

SNRin
: (17)

For further numerical analysis one should specify the
parameters of the interferometer and the NC. We will use
values close to those of LIGO-1 [3]: L � 4 km, Plas �
5 W, PBS � 150 W, F � 100, and � � 0:9 ms. The value
EBS � 7:6 kV=m is found from PBS by using the formula
EBS � �960PBS�

1=2=dB for a uniform circular beam with
diameter dB � 0:05 m. Then the dependence between
122003
�EGW�t� produced in the interferometer output and the
change of arm cavity length �L�t�=L under the action of
GW with the frequency � � 150 Hz is given numerically
as

�EGW�t� � 1:3 	 1016�L�t�=L; (18)

where �EGW�t� is measured in V=m.
To drive the SR mechanism, we need to choose the

parameters of the NC so that �EGW�t� will vary within
the bistability interval E2 � E1.

A key problem in the building of the NC is the nonlinear
medium, which should have a rather high value of the
nonlinear coefficient n2. Recent investigations showed a
new possibility of creating such a medium on the basis of
the electromagnetic induced transparency phenomenon
[13]. The obtained value of n2 is �10�13 �m=V�2. We
will use this value of n2 as well as the following arbitrary
parameters: d � 1 cm, r � 0:99, andD � 10 cm. The NC
length D is tuned so that f0 � flas � 119 Hz. Then the
bistable regime in the NC is established with E0 �
63:9054261 V=m and E2 � E1 � 2:5
10�6 V=m. The ap-
propriate curve of Eout versus Ein is shown in Fig. 2(c).
Note that the relative instability of Emean, which is neces-
sary to have in order to maintain Emean sufficiently close to
the E0 is��E2 � E1�=E0 � 4
10�8. Since Emean is formed
by the interference of two arm beams at the beam splitter,
the same value of relative instability is transformed to each
beam power and to PBS as well. As a result, the required
relative instability of laser power, which is necessary to
have in order to maintain the position of Emean sufficiently
close to the E0 is �4
10�8, which is easy to provide.

Now we need to determine the function 	in�t� as well for
computation of Sin�f� and Nin�f� by Eqs. (13). However.
neither analytical expressions nor experimental data de-
scribing the time variation of the interferometer noise 	in�t�
is known. Instead, one should derive 	in�t� from a well-
known frequency spectrum of interferometer noise by us-
ing an inverse Fourier transform. For this purpose we will
use a sample of noise spectrum, which is close to the
LIGO-1 noise spectrum [3]. First we approximate the exact
numerical data of the noise spectrum by composing the
function F�f�

F�f� � 10�23

�
400 000

f2:65
� 0:015f

�
;

where f denotes frequency in Hz.
As shown in Fig. 3(a), the function F�f� well fits exact

experimental points of the LIGO-1 noise spectrum up to
1000 Hz. Then, Nin�f� is presented as the product of F�f�
and a random function g�f�

Nin�f� � F�f�g�f�: (19)

Here g�f� is a Gaussian random function with mean 0 and
mean square value 0.5. The function Nin�f� is shown in
Fig. 3(b).
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Now supposing that Nin�f� is the noise spectrum of the
interferometer, we use an inverse Fourier transform of
Nin�f� and obtain the time variation 	in�t� of the interfer-
ometer noise

	in�t� �
1

2�

Z 1
�1

Nin�f� exp��2i�ft�df: (20)

Numerical integration of (20) is done in frequency interval
��512 . . . 512� Hz by using a fast fourier transform algo-
rithm with 1024 points. As a result we derived the function
	in�t�, which is close to the time variation of the LIGO-1
noise [see Fig. 3(c)].

Slow drift of the noise amplitude, seen in Fig. 3(c), is
conditioned by low frequency components in noise spec-
trum. This drift will deteriorate the performance of the SR
because signal amplitude will frequently move outside of
the bistability interval E1 . . .E2. To prevent this drift, an
appropriate compensation technique should be used. In
such compensation, an error signal is generated, which is
proportional to the difference between Emean and E0. This
signal is fed back to the actuators to control the amplitude
of Emean, locking it to E0. Another variant of compensation
is to control the resonance frequency fcav, controlling by
this the bias �. Then according to (10) E1 and E2 will be
controlled, and therefore E0 also will be controlled and
locked to the Emean. The faster the response of the com-
pensation loop the higher is the cutoff frequency fcut up to
which spectral components of the interferometer noise
	in�t� are suppressed. Depending on the quality of the
compensation scheme, spectral components below fcut

can be either completely removed or suppressed. We will
122003
assume that the compensation scheme provides the sup-
pression of the noise spectral components below fcut to the
value F�fcut�. Thus the function F�f� is replaced by an-
other function Fcomp�f�, when a compensation scheme is
implemented, i.e. instead of (19) we have

Nin�f� � Fcomp�f�g�f�

Fcomp�f� �
�F�f� if f > fcut

F�fcut� if f < fcut:

(21)

Computing 	in�t� according to (20) we obtain the time
variation of the noise amplitude 	in�t� under the perform-
ance of the compensation scheme. As it is seen from Fig. 4
the drift of noise 	in�t� for fcut � 30 Hz is about 4
10�22,
which is equivalent to the drift of Emean on about
5:2
10�6 V=m. For fcut � 50 Hz these drifts are corre-
spondingly �2
10�22 and �2:6
10�6 V=m.
III. SINUSOIDAL GW

In this section we investigate the SNR gain when a GW
with sinusoidal waveform is detected. Such GWs are emit-
ted by rotating neutron stars or by a binary system, long
before the coalescence. The change of arm cavity length is
presented as

�L�t�
L

� A sin�2��t�: (22)

Suppose that A � 10�23, � � 150 Hz, and detection band-
width is f2 � f1 � 450 Hz� 50 Hz � 400 Hz. Then the
noisy signal

�Ein�t� � 1:3 	 10�7 sin�2��t� � 	in�t� (23)
-5
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is produced in the output of the interferometer according to
(11) and (12). The signal-to-noise ratio of this signal (i.e.
SNRin) is calculated by (12)–(14), where 	in�t� is com-
puted by (20) and (21). The calculations are performed
according to the following.

After the generating of 1024 values of the random
function g�t�, the noise spectrum Nin�f� is calculated by
using (21) and then by using (20)—the function 	in�t�.
Substituting 	in�t� in (23) we calculate the time variation of
the interferometer output signal �Ein�t�, which is used in
(13) to derive the spectrum Sin�f� of the interferometer
output signal. Finally SNRin is computed from (14).
However, the obtained value of SNRin [let it be defined
as SNRin

�1�] can differ from the real experimental value of
SNRin because we have used the random function g�f�.
Therefore, the SNRin calculation procedure should be per-
formed again: the computation code generates a new series
of 1024 values of the function g�f� and a new SNRin

�2� is
derived. Repeating this procedure many times we obtain
different values of SNRin

�i�, i � 1; 2 . . .K. Then the robust
value of SNRin is obtained by averaging these values:

SNR in �
1

K

XK
i�1

SNR�i�in : (24)

The number of trials K should be chosen such that addition
of a new value SNRin

�K�1� does not significantly change
SNRin in (24). As it is seen from Fig. 5, it is sufficient to
take K � 30. Then the value of SNRin proves to be �0:21.
The SNRout is calculated analogously by using the
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0,20

0,21

0,22

0,23

SN
R

in

Number of trials, K

FIG. 5. Computed values of the SNRin versus the number of
trials K for sinusoidal GW with frequency 150 Hz and strain h �
2
10�23. The parameters of interferometer are close to those of
LIGO-1, D � 10 cm, d � 1 cm, n2 � 10�13 �m=V�2, and r �
0:99, detection bandwidth f2 � 450 Hz, f1 � 50 Hz, and the
cutoff frequency is fc � 50 Hz.
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Eqs. (15) and (16). However, it is necessary to use a larger
number K, so we took K � 1000.

First, let us investigate the dependence of G on the
bistability interval E2 � E1. As it was mentioned earlier,
this interval is determined by the bias between the laser
frequency flas and f0 according to (7) and (10). Hence the
change of the interval E2 � E1 can be provided by the
change of fcav, which can be done by tuning of the NC
length D. In Fig. 6 the SNR gain G versus the length of the
bistability interval is plotted. Significant gain of�4 is seen
at the value E2 � E1 � 2:5
10�6 V=m. When E2 � E1

surpasses 2:5
10�6 V=m, the gain drops sharply to �1. It
also decreases to 1 when E2 � E1 tends to 0 and NC
becomes monostable. Such resonance behavior of the
SNR gain versus the bistability interval is just caused by
the SR mechanism, which performs here according to the
following.

When E2 � E1 � �Ein�t� [in our case �Ein�t� �
2:5
10�6 V=m], the Eout�t� is localized on one of the
branches, so the relationship between Eout and Ein is ap-
proximately linear, and G� 1. By decreasing E2 � E1,
this linear relationship is preserved until E2 � E1 �
�Ein�t�. However, as soon as �Ein�t� begins to cross the
upper E2 and lower E1 thresholds and Eout begins to hop
from one branch to another one, the ratio Eout=Ein sharply
increases. Although crossing of the thresholds and the hops
of Eout takes place due to the net input noisy signal �Ein�t�,
the content of the GW induced signal in Eout nevertheless
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FIG. 6. SNR gain versus the bistability interval at different
detection bandwidths, when detecting the sinusoidal GW
with frequency f � 150 Hz and strain h � 2
10�23. The pa-
rameters of the interferometer are close to those of LIGO-1,D �
10 cm, d � 1 cm, n2 � 10�13 �m=V�2, r � 0:99, E0 �
63:9054261 V=m, E2 � E1 � 2:5
10�6 V=m, and the cutoff
frequency is fc � 50 Hz.
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increases leading to the increase of SNRout and G. Further
decrease of the bistability interval leads to the situation
when E2 � E1 � �Ein�t�. Now the influence of hops in
changing the ratio Eout=Ein weakens, resulting in reduction
of the SNR gain. Notice that at E2 � E1 � 0 (when the NC
becomes monostable), the small SNR gain is still observed:
i.e. the SR mechanism performs in monostable nonlinear
cavity as well, but with less efficiency.

Although the noise signal 	in�t� in our study has a
definite amplitude, determined by the above used noise
spectrum of LIGO-1, it still would be useful to investigate
the behavior of SNRout when the noise amplitude is
changed. To do this let us replace 	in�t� in (12) and (13)
by the function B	in�t�, where B is a dimensionless con-
stant coefficient. As it is known and as it follows from (14)
the dependence of the SNRin on the noise amplitude B goes
as �1=B2, i.e. SNRin monotonically decreases when noise
amplitude increases. However, the SNRout essentially dif-
fers from SNRin due to the SR mechanism. To derive the
behavior of SNRout, let us specify again the bistability
interval E2 � E1 � 2:5
10�6 V=m, corresponding to a
maximum G at B � 1. Then by changing B we obtain
the dependence of SNRout versus the amplitude of input
noise. The computations are performed with the number of
trials K � 1000. As a result we obtained the graphs pre-
sented in Fig. 7. We can detect a resonancelike behavior of
SNRout versus input noise amplitude, which is the signa-
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0
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FIG. 7. Output SNR versus the amplitude of input noise
(circles� line) at different detection bandwidths when a sinu-
soidal GW with frequency f � 150 Hz and strain h � 2
10�23

is detected. The parameters of the interferometer are close to
those of LIGO-1, D � 10 cm, d � 1 cm, n2 � 10�13 �m=V�2,
r � 0:99, E0 � 63:9054261 V=m, E2 � E1 � 2:5
10�6 V=m,
and fc � 50 Hz. The value B � 1 corresponds to the noise
amplitude shown in Fig. 4(a), which is close to the LIGO-1
noise. The dashed line represents SNRin.
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ture of the SR mechanism, performing here. SNRout �
SNRin when noise amplitude is small. However, as B is
increased when �Ein�t� begins to cross the thresholds and
Eout begins to hop from one branch to another, the SNRout

sharply increases, surpassing SNRin at the maximum point
by�5 times. One also can see that the SNR gain is reduced
when the detection bandwidth decreases.
IV. CHIRP GW

In this section we study the SNR gain for the case of
GWs with chirped waveform. Such GWs are generated by
compact binary systems in the final stage of inspiral, when
the stars merge into a coalesced state. GW strain can be
presented as the following [14]:

h�t� �
A����������������

tcoal � t4
p cos

��
c3

5
M
�tcoal � t�

�
5=8
�
; (25)

where tcoal is coalescence time, 
 � 6:67
10�11n
m2=kg2

is the gravitational constant, M � �M1M2�
3=5=�M1 �

M2�
1=5, and M1 and M2 are the masses of the two stars.

Suppose that both of the stars have solar mass, M1 �
M2 � Msun � 1:99
1030 kg, and the amplitude A �
7
10�24. Figure 8 presents the waveform of h�t� at the
last �1 sec before coalescence and its spectrum. The
detection of this GW signal by LIGO-1 with the detection
bandwidth f2 � f1 � 450 Hz� 50 Hz � 400 Hz is not
effective, because according to (12)–(14) SNRin � 0:05.
However, by passing this noisy signal through the NC with
the same parameters as in the previous section, the output
SNR can be increased due to the SR mechanism. Again let
us investigate first the dependence of the SNR gain on the
bistability interval. As it is seen in Fig. 9 the SNR gain is
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FIG. 8. Waveform and the spectrum of a chirp GW emitted by
a coalesced binary system with the masses M1 � M2 � Msun, at
last �1 sec before coalescence.
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FIG. 10. Output SNR versus the amplitude of input noise
(circles� line) at different detection bandwidths when a chirp
GW is detected. The parameters of the interferometer are close
to those of LIGO-1, D � 10 cm, d � 1 cm, n2 �
10�13 �m=V�2, r � 0:99, E0 � 63:9054261 V=m, E2 � E1 �
2:5
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to the noise amplitude shown in Fig. 4(a). The dashed line
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0 1x10-5 2x10-5 3x10-5 4x10-5
0

2

4

6

8

10

f
c
=10 Hz

f
c
=30 Hz

f
c
=50 Hz

SN
R

 g
ai

n,
G

Bistability interval, E
2
-E

1
 (V/m)

FIG. 9. SNR gain versus bistability interval at different cutoff
frequencies, when detecting the chirp GW with A � 7
10�24.
The parameters of the interferometer are close to those of LIGO-
1, D � 10 cm, d � 1 cm, n2 � 10�13 �m=V�2, r � 0:99, E0 �
63:9054261 V=m, E2 � E1 � 2:5
10�6 V=m, and the detection
bandwidth is f2 � 450 Hz, f1 � 50 Hz.
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G� 10 for the cutoff frequency fc � 50 Hz and the de-
tection bandwidth f2 � f1 � 400 Hz. By decreasing the
detection bandwidth, the SNR gain decreases tending to 1,
which is analogous to the previous case of sinusoidal GW,
so these graphs are not shown here. Instead we present the
graphs corresponding to different cutoff frequencies to see
how the SNR gain deteriorates when the cutoff frequency
of the compensation scheme decreases. It is seen that the
bistability interval where the SNR gain is observed in-
creases, and the maximal SNR gain decreases when the
cutoff frequency decreases. However, even at fc � 10 Hz,
the SR mechanism successfully performs here, providing a
SNR gain of �6:5. Calculations of SNRout were made
analogously to those of the previous section, with the
number of trials K � 1000. Finally, we investigated
SNRout versus the amplitude of input noise, by replacing
analogously to the previous case, input noise amplitude
	in�t� by the B	in�t�. As a result, analogous graphs repre-
senting the dependence of SNRout versus B are derived (see
Fig. 10). Resonancelike behavior of SNRout is observed,
which provides the increase of SNRout to a value �0:5
(SNR gain is G� 10). Thus the SR mechanism performs
more effectively when detecting chirp GW signal rather
than GW signal with the sinusoidal waveform.

In conclusion, we investigated the application of the SR
phenomenon in a GW interferometer in order to increase
the sensitivity. It is done by passing the output signal
through a nonlinear cavity installed in the output of the
122003
interferometer. When appropriately tuned, the NC be-
comes capable of increasing the SNR of a noisy signal
passing through it due to the SR phenomenon. We per-
formed detailed computations of SNR gain for two types of
GW waveform—sinusoidal and chirp—taking as an ex-
ample the parameters of the interferometer close to those
of LIGO-1. It is obtained that the influence of SR is the
most effective for wideband (several hundred Hz) detec-
tion of a chirp GW signal, when a bistable regime in the
NC is established. Then, passing through the NC increases
the SNRin of the interferometer output signal from
SNRin � 0:05 to SNRout � 0:5. This enhancement of the
SNR is not dependent on noise type, which dominates in
the interferometer. The proposed approach can be used for
upgrading GW interferometers.

ACKNOWLEDGMENTS

I thank Professor A. Chilingarian for fruitful discussions
and Ph.D. student A. Hakobyan for help in the preparation
of figures. This work was supported by the Armenian
National Science and Education Fund (ANSEF).
-8



APPLICATION OF STOCHASTIC RESONANCE IN . . . PHYSICAL REVIEW D 73, 122003 (2006)
[1] B. Abbot et al., Phys. Rev. D 69, 122001 (2004).
[2] K. Belezynski, V. Kalogera, and T. Bulik, Astrophys. J.

572, 407 (2002).
[3] The advanced LIGO web site www.ligo.caltech.edu/

advLIGO/.
[4] H. J. Kimble et al., Phys. Rev. D 65, 022002 (2002);

K. McKenzie, D. Shaddock, and D. McClelland, Phys.
Rev. Lett. 88, 231102 (2002).

[5] V. B. Braginski et al., Phys. Rev. D 61, 044002 (2000).
[6] A. Buonanno and Y. Chen, Phys. Rev. D 64, 042006

(2001).
[7] K.-X. Sun, M. M. Feiger, E. Gustafson, and R. L. Byer,

Phys. Rev. Lett. 76, 3053 (1996).
[8] A. Wicht et al., Opt. Commun. 134, 431 (1997); 179, 107
122003
(2000); G. G. Karapetyan, Opt. Commun. 219, 335 (2003).
[9] G. G. Karapetyan, Opt. Commun. 238, 35 (2004).

[10] R. Benzi, A. Sutera, and A. Vulpani, J. Phys. A 14 L453
(1981); L. Gammaitoni et al., Rev. Mod. Phys. 70, 223
(1998).

[11] A. Yariv and P. Yeh, Optical Waves in Crystals:
Propagation and Control of Laser Radiation (Wiley-
Interscience, New York, 1983).

[12] H. M. Gibbs, Optical Bistability. Controlling Lioght with
Light (Academic Press, New York, 1985).

[13] H. Wang, D. Goorskey, and M. Xiao, Phys. Rev. Lett. 87,
073601 (2001); Phys. Rev. A 65, 041801 (2002).

[14] S. Droz et al., Phys. Rev. D 59, 124016 (1999).
-9


