

Space Environmental Viewing and Analysis Network (SEVAN)

Chilingarian¹, Ch.Angelov², K. Arakelyan¹, T.Arsov², Avakyan¹, S. Chilingaryan^{1,4}, K. A.Hovhanissyan¹, G. Hovsepyan¹, D. Hržina³, T.Hovhannisyan¹, D. Maričić³, A.Nishev², D.Roša³, J.Stamenov², S. Tserunyan, A. Tchorbadjieff², I.Kalapov², T.Karapetyan¹, L.Kozliner¹, B.Mailyan¹, A. Reymers, I. Romštajn³

¹Alikhanyan Physics Institute, Yerevan, Armenia, Alikhanyan Brothers 2, Yerevan 375036, Armenia, ²Nuclear Physics Institute of the Bulgarian Academy of Science, 72 Tzarigradsko chaussee Blvd. 1784 Sofia, Bulgaria

³Zagreb Astronomical Observatory, Opatička 22, 10000 Zagreb, Croatia

⁴Institut fuer Prozessdatenverarbeitung und Elektronik, Forschungszentrum Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

INTAS

8777

EA8655

A1554

Alikhanyan Physics Institute, Alikhanvan Brothers 2.

Electronics for the SEVAN

COSMIC RAY DIVISION Alikhanyan Physics Institute, Alikhanyan Brothers 2, Yerevan 375036, Armenia

SEVAN home page: http://crd.yerphi.am/sevan

INTAS

8777

FA8655

A1554

COSMIC RAY DIVISION Alikhanyan Physics Institute, Alikhanyan Brothers 2,

Yerevan 375036, Armenia

artal Viewing

Starting of SEVANs in Bulgaria and Croatia

Figure 2 SEVAN detector at Mussala mountain research station of Nuclear Physics Institute of Bulgarian Academy of Science

Figure 4 Armenian and Croatian Physicists at Zagreb observatory; from left to right: Armenian and Croatian Physicists at Zagreb observatory: from left to right Darije Maricic, Dragan Rosa, Karen Arakelyan, Gagik Hovsepyan and Ivan Romstajn

Figure 5 Karen Arakelyan assembling high voltage power supply of Photomultiplier

Figure 6 Gagik Hovsepyan checking the gap in the SEVAN detector

Selection of Secondary Cosmic Rays

	Gamma	Electron	Muon	Neutron	Proton	
Registered particles Purity by special combination						
Low energy charged particles [100]	11.605	43.300	37.380	2.838	4.804	
Neutral Particles [010]	50.612	8.837	4.494	35.071	0.972	
High energy charged particles [101]+[111]	0.002	0.106	94.904	0.808	4.077	
Registered particles Purity by count rate of the detectors						
Upper Detector	7.616	28.952	56.080	2.448	4.814	
Middle Detector	11.550	5.223	67.913	11.038	4.167	
Lower Detector	2.696	4.438	85.873	3.267	3.634	

Purity-Efficiency Diagram

4-layered SEVAN module

SEVAN Count Rates

Aragats 3200 a.s.l.	ArNM 18NM64 0.4ms	SEVAN [100]	SEVAN [010]	SEVAN [111]
Relative Error	0.0068	0.0081	0.0218	0.0192
1/sqrt(N)	0.0049	0.0078	0.0223	0.0194

	YerPhi	(1000m)	NorAmberd (2000m)		Aragats (3200m)		Zagreb, Croatia (130m)	Moussala, Bulgaria, (2925 m)
Type of secondary particle	Measured count rate	Simulated count rate	Measured count rate	Simulated count rate	Measured count rate	Simulated count rate	Measured Count rate	Measured count rate
Low energy charged particles (100)	8862±108	7202	11593±161	10220	16581±130	17202	6415±84	17479±136
Neutral particles (010)	363±19	359	690±27	795	2011±46	1584	316±18	1115±38
High energy muon (111 & 101)	4337±67	5477	4473±99	5548	5534±64	8051	3824±64	6315±78

Barometric coefficients, count rates and relative errors of SEVAN monitors

Monitor	Altitude (m)	Rc (Gv)	Barometric Coeff. %/mb	Correlation Coefficient	Count rate [min]	Relative error	$\frac{1}{\sqrt{N}}$
Aragats SEVAN Low energy charged particles (Coincidence 100)	3200	7.1	-0.5±0.018	0.995	15389	0.007	0.0080
Aragats SEVAN High energy muons (Coincidence 111+ Coincidence 101)	3200	7.1	-0.351±0.038	0.96	3868	0.014	0.0161
Aragats SEVAN neutrons (Coincidence 010)	3200	7.1	-0.511±0.018	0.995	1959	0.019	0.0225
Nor Amberd SEVAN Low energy charged particles (Coincidence 100)	2000	7.1	-0.281±0.022	0.957	5941	0.013	0.0129
Nor Amberd SEVAN High energy muons (Coincidence 111+ Coincidence 101)	2000	7.1	-0.242±0.022	0.952	1988	0.026	0.0224
Nor Amberd SEVAN neutrons (Coincidence 010)	2000	7.1	-0.54±0.070	0.899	674	0.037	0.0385
Yerevan SEVAN Low energy charged particles (Coincidence 100)	1000	7.1	-0.3±0.014	0.987	9446	0.010	0.0102
SEVAN High energy muons (Coincidence 111+ Coincidence 101)	1000	7.1	-0.149±0.035	0.765	4714	0.015	0.0145
Yerevan SEVAN neutrons (Coincidence 010)	1000	7.1	-0.4±0.039	0.943	425	0.048	0.0485

5min simulated enhancements in the Upper and Middle layers of the SEVAN basic unit.

Detector Layer	Solar Protons	Solar Neutrons
Upper 5cm scintillator	4.8σ	2.6σ
Middle 25 cm scintillator	1.7σ	6.4σ

Spectral "knees" of SCR

Relativistic Runaway Electron Avalanches in thunderstorm atmosphere

Energy Spectra of RREA Electrons and Gamma - rays

How electrons can "runaway"?

Friction on electrons in air at sea level. Shown as a function of electron energy. "Collisional" and "radiative" labels indicate dominant process for energy range in question. The dashed curve is the Bethe-Bloch equation. The axis on the right indicates the electric field strength required to produce a force on an electron equal to the frictional force.

Brant Carlson's PhD thesis

RBF Gammas and Electrons detected by SEVAN

Electron-photon cascade and lightings

The hybrid particle detectors, measuring neutral and charged fluxes provide following advantages upon existing detector networks measuring single species of secondary CR:

- Enlarged statistical accuracy of measurements;
- Probe different populations of primary cosmic rays with rigidities from 7 GV up to 20-30 GV;
- Reconstruct SCR spectra and determine position of the spectral "knees";
- Classify GLEs in "neutron" or "proton" initiated events;
- Estimate and analyze correlation matrices among different fluxes;
- Significantly enlarge the reliability of Space Weather alerts due to detection of 3 particle fluxes instead of only one in existing neutron monitor and muon telescope world-wide networks.
- Detection of electrons and gamma-quanta from showers generated by powerful natural accelerators operating during thunderstorms – research of RREA process

COSMIC RAY DIVISION Alikhanyan Physics Institute, Alikhanyan Brothers 2, Yerevan 375036, Armenia

