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1. Introduction

The treatment of the experimental data in cosmic ray physics is
performed by simulating the experimental situation. The simulation rea-
lizations {the so-called training sample) ‘are apnlied to find the sta-
tistical procedure parameters. We shall perform cur analysis with two
situations of ten encountered, when we deal with data handling., The first
agne is the identification - a finite action problem, when the space of
possible states of matura consisis of finite number of cateqories, the
second, an infinite action problem, is the estimation of a parameter,
when the space of possibie states covers a continuous interval of va-
lues. Trere is the n-dimensional variable X (experimental observa-
tion), wnich, as we hope, is related to the state of nature, and a de-
cision 1s reguired cn the type or energy of the particle traversing the
installation. The observation vectoer X is a set of enerqy release
comnited by J -meson or proton traversing the transition radiation de-
tector (Chilingarian, 1982) or a set of secondary electrons accompany-
ing #¢ -neson of urknowa energy traversing the spark calorimeter (Chi-
lingarian and Ter-Antenian, 1982},

The peculiarities of the traiming sample application in cosmic rav
physics are characterized by reducing the initiz) information: the re-
placement of ihe energy release by the geormetrical average, etc. and
by the Likelinhood function form specitying with the conditional para-
meiric independence approximation. Than the Likelihood function is de-
termined iteratively by fitting the training sanple with a function
from the chosen class by some goodness of fit procedure.

The demerit of this treatment is that the assumption of featura
independence is often erroneous, it is never known 1f the reduction is
carried out in the best sossible way,and it s unknown whether the
chosen functiopal class fits the Likelihood furction well.

Point cne of this paper is to remind that the training sample is
tne only inforimation one shouid proceed from in estimation and decision
wmaking, and one aust select the statistical procedures to use it effect-
iveiy. Such procecures muyst be Bayesien for one to take the most com-
piete account of the 2 criori information and provide the minimum mis-
ciassifications; nonparanetric rot to impose any oxternal structure on
the gata, and adaptive - fo allow the data to speak for themselves as
fully as possible.
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2. The Bayesian Decision Rules and Probability Density Local Estimation

Suppose we want to determine the particie type according to the de-
tector response. The Bayesian identification rule has a form

A7) ={ P, 4 Plo)p(Rr0y>Pad p (X/7) "
T otherwise

wigre .fj(p} any f)(JT) are a priori probabilities {the relative portion

of protons and X -mesarns thermined in the previous mest precise ex-
pericent), 0 (¥ p) P (X/F) are the conditional densities, i.e,

tue probacilities that the energy is releascd by proton or 2~ ~meson ,
respectively.

The key procedure of the Bayesian degision rule {1) is the estima-
tion of the densities PUXjp) and PUX/F) by the training sample.
Amongy numerous density ‘estination mathods (Tapia and Thompson, 1378),
one can outline the Nearest Neighbour (NN) rules. They are nonparametric
ih spirit, do not presuppose any structure and are economic in their
greed for computer memory and time. Despite their simplicity, the NN
rules are the surprisingly powerful discrimination technigue. To reduce
the variance of the NN estirator due to smeli sampie size the alternate
i rule was proposed (Rabiner et al., 1979), first, to estimate the den-
sity for different number of NN
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wnere U0 a Is the volume of the region, containing ¢ NN of the
X7 vectar, M is the tstal number of vectors in the training sample,
G{is the feature space dimension, &¢ is the distance to the ¢ -th
aN. Second, to average the obtained estimates

R S (3)
P&M (X) - ii &M (X)/K

Point two of the paper censists in zhe proposal te use instead of
arithmetic means toe well known in robust statistic theory {ed, by Launer
and Wilkinson, 1979) iinear combinations of order statistics

p 7 Y < xﬂo(z =1 (&
P[KJ"M (X) ) é—! 0({4 %‘_-LM (X )/ nf2=! :

Cwhere F%f],aa is the ranged set of density estimates: By the appro-
priate selection of the of; -coefficients gne may obtain more precise
censity estimates. The median estimate is the simpiest version of such
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estimates
. A :
4 mMED Ly _ M is an odd number {5
PEKJ M (03 = Pl o

3. The Estimation by KNN Rule

Earlier {Chilingarian and Ter<Antonian, 1982} we constdered the in-
terval estimation of ,!C -meson energy by multi-layered installations.
The recognition (estimation) was performed by the KNN classifier {1) in
the 13 selected classes (energy intervals), the distance to the NN was
calculated in a metric, sansitive to the correlations between the fea-
tures. This method can be applied for energy spectrum studying, but
there §s another aspect, too: the single i -mescn energy determination
at the given energy spectrum. In this case the training sample should
be generated according tc the spectrum and not be divided into classes;
the estimation is again carried out by treating the ordered sets of the
estimated vector NN {Cover, 1967)

Ty > g > e =4 | (6)
E(x)=_ZﬁhE[;;:) = f

t=1}

where & [c3 is an orderad set of energy values corresponding to X NN
of vectar. In this case one can also apply the median estimates {5},
but the more flexible approach is not connected with the a priori selec-
tion of ¢ coefficients. It implies an optimization procedure, pro-
ceeding from the concrete viewpeint on the deta structure, The optimiza-
tion of Jﬁy ceefficients will jead to the minimization of the mean
square errors of enmergy estimation integrated over the whole eneray
spectrum or over certain part of it {e.g. for high energies).

The last point of the paper appeals not to regard the statistics
as a collection of dogmatic procedures, but to construct the new more
precise and powerful metheds proceeding from experimental purposes and
available data.
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