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Neutron Monitors detecting cores of
Extensive Air Showers. Abstract

* We identify and analyzed EAS events by the registration of the neutron bursts in the Aragats NM. We relate these
bursts to the EAS cores hitting the ground nearby NM. All bursts were observed as sequences of microsecond pulses
temporally isolated from other pulses on a time scale of at least 100 ps. The mean burst duration, defined as a time
interval between the first and last detectable pulses in the sequence was 2.5 ms +/- 0.6. Thus, NM is enlarging the
EAS core particle lifetime (usually not more than 20 — 30 ns) by 5 orders of magnitude by registering multiple
secondary neutrons born in the lead absorber and soil by relativistic particles from the EAS core. In this way, NM
registers EASs and enables the estimation of primary particle energy by measuring the event multiplicity (number of
isolated pulses in NM measured with a dead time of 0.4ps). Although the sensitive area of NM is only several tens
of m2, multiyear operation of the NM network will provide sufficient statistics for the research around the knee of
all particle energy spectrum (3-4 PeV) and beyond. Additionally, EAS core physics will be revealed.

* The network of nearly = 50 neutron monitors (NM) operates 24/7 around the globe at different altitudes, latitudes,
and longitudes for more than 60 years. Maintenance of such detectors is very cheap and they are providing data for
many years with minimal intervention from personnel. The data from neutron monitors are collected in databases
with open access and a user-friendly interface. After a very simple modernization of NM electronics, it will be
possible to recover the energy spectra of galactic cosmic rays with detectors located all around the globe.

* The largest cosmic ray experiments measuring neutron content of EAS confirm the neutron bursts from EAS cores
without any relation to lightning occurrences.






Universe is full of Particle Accelerators

Galaxies that point their jets at us are
called “blazars”, Markaryan galaxies
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EAS cores contain most energetic hadrons and contain valuable
information on cosmic ray composition and energy spectra
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monitor, the risetime (0.1-0.9) is =300 ns.
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Time series of ArNM proportional counters registered a large neutron burst at 1:03:4 on 19 October
2013, total multiplicity of 2310 measured by the shortest dead time of 0.4 ps. The multiplicities above 2000
are extremely rare, 1-2 per month; neutron bursts detected by both ArNM and Muon are even rarer, 3-4
per year. The primary particle energies corresponding to these events are well above 10'¢ eV.
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The dependence of the multiplicity (size) of neutron burst on energy of primary particle,
which initiated EAS (obtained by relation of the frequency of different observed
multiplicities (neutron burst sizes) to integral energy spectrum measured by MAKET
array. By arrow we show the knee position of the all particle spectrum and by asterisk — the

and muon detector.

Citation: A.Chilingarian A., Hovsepyan G., Kozliner L., Extensive Air Showers, Lightning,
and Thunderstorm Ground Enhancements, Astroparticle Physics 82, 21 (2016).
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Conclusions

* The neutron monitor is enlarging the very short EAS time Erofile (20 =30 ns) by = 5 orders of
magnitude (2-3 milliseconds) making it possible to use rather a slow device (neutron monitor) for
the registration of ultrarelativistic particles from EAS cores.

» After the detailed simulation of the detector response function by modeling the interactions of
primary particles in the atmosphere above the detector it will be possible to estimate the energy
spectra of primary cosmic ray tlux. Sure, the relation “multiplicity — primary energy” is a statistical
one, and depends on several unknown parameters of EAS development (core distance, shower
age, primary type), however, the NM multiplicit%can be related to the energy of the primary
cosmic ray hadron hitting the terrestrial atmosphere and initiated EAS. After a detailed simulation
of thk;el.Nthresponse to EAS cores the statistical relation of multiplicity — primary energy can be
established.

* The network of nearl¥150 Neutron monitors operate at different altitudes, latitudes, and
longitudes for more than 60 years. Maintenance of such a detector is very cheap and they are
providing data for many years with minimal intervention of personnel. The data stream is
collected in the databases with open access and a user-friendly interface. By using the neutron
monitor database (NMDB) after a simple modernization of NM electronics, and after makinﬁ
simulations of the detector response for all included in the network neutron monitors, it will be
possible to recover the energy spectra of galactic cosmic rays all around the globe.



