Definition of interaction cross section

Shoot $\quad N_{p}$ point-like projectiles on
N_{T} targets of geometric cross-section σ each, spread over the area A :
What is probability for a projectile to hit a target?

$$
\text { probability }=N_{\mathrm{T}} \sigma / \mathrm{A}=\sigma \mathrm{n}_{\mathrm{T}} \quad\left(\mathrm{n}_{\mathrm{T}}=\mathrm{N}_{\mathrm{T}} / \mathrm{A} \quad \text { targets per unit area }\right)
$$

How many hits will happen in total ?

$$
N_{\text {hits }}=N_{p} \sigma n_{T} \quad \text { or: } \sigma=N_{\text {hits }} /\left(n_{t} N_{p}\right)
$$

(only strictly valid for no overlap of individual targets)
or: $\mathrm{N}_{\text {hits }}=\sigma \quad \mathrm{n}_{\mathrm{T}} \quad \mathrm{N}_{\mathrm{p}}$
(1/s)
(cm^{2}) $\quad(1 / \mathrm{cm})$
(1/s)
σ : interaction cross section

Estimate interaction of cross section of solar neutrinos in Chlorine experiment.

$\mathrm{C}_{2} \mathrm{Cl}_{4}=24+148=172$ nucleons $\approx 172 \mathrm{u}=2.87 \times 10^{-25} \mathrm{~kg}$
610 t of liquid $=2.13 \times 10^{30}$ molecules

On average, only $1 / 4 \mathrm{Cl}$ atoms is a ${ }^{37} \mathrm{Cl}$ in natural occurring Cl
20 neutrons in this ${ }^{37} \mathrm{Cl}$ atom.
20 neutrons from Cl in a $\mathrm{C}_{2} \mathrm{Cl}_{4}$ molecule.
Only these 20 can make the reaction
$20 \times 2.13 \times 10^{30}$ nucleons $=4.25 \times 10^{31}$ nucleons

${ }_{17}^{37} \mathrm{Cl}$	17 Protons, 20 neutrons
${ }_{17}^{35}$	Cl
17 Protons, 18 neutrons	
${ }_{18}^{37}$	Ar
18 Protons, 19 neutrons	

reaction in detector:
$\mathrm{n}+\mathrm{Ve} \rightarrow \mathrm{P}+\mathrm{e}^{-}$
in ${ }^{37} \mathrm{Cl}$

```
Davis Experiment: }4.25\times1\mp@subsup{0}{}{31}\mathrm{ neutrons in the }\mp@subsup{}{}{37}\textrm{Cl}\mathrm{ atoms
    detection rate 15 neutrino interactions/month = 15/2.6 < 106 s = 5.8 < 10-6 /s
    but }\approx30%\mathrm{ have already decayed in 30 days (when the Ar is flushed out),
    as }\mp@subsup{T}{\textrm{Ar}}{}=35\mathrm{ days
    True rate: 5.8 x 10-6 / s / 0.7 = 8.27 x 10-6 / s
Neutrino flux
    6\times1010 Ve / (cm2 s) from all channels
    only 15% goes into Be branch :
    only 0.5 (1 of 2) of neutrinos in the Be branch is above threshold
    only 0.33 (1 of 3) of neutrinos do not oscillate away.
remaining eligible neutrinos: }\mp@subsup{N}{p}{}=0.15\times1010/(cm s
```


Caveat: Neutrinos come at different energies and are thus interacting with different probability. The higher the energy, the more likely the interaction. Thus, most of the neutrinos detected by the Cl are ${ }^{8 B}$ neutrinos.
Although small, the neutrinos from CNO cycle are detected as well in the Cl detector.

