Particle Physics Relativistic Kinematics

Exercises

1. Prove that the squares of four-vectors are relativistically invariant! [2]
2. Prove that the products of four-vectors are relativistically invariant!
3. Show that the square of the four-velocity is equal 1 !
4. An electron and a proton have the same curvature in a magnetic field.

The electron moves twice as fast as the proton.
What is the momentum of both particles?
[2]
5. The IceCube experiment measures interactions of high energetic cosmic neutrinos in $1 \mathrm{~km}^{3}$ of Antarctic ice. Cosmic τ neutrinos produce τ leptons with a mass of 1.78 GeV and a proper lifetime of 0.3 ps . What is the decay length of a τ lepton with an energy of 356 TeV ?
6. In 1987 the supernova SN1987A exploded at a distance of 168.000 light years. Assume it simultaneously emitted photons and neutrinos with a momentum of 9 MeV.

- Calculate the relation between the neutrino mass and the time difference of the arrival of the photons and neutrinos on Earth!

7. In the Large Hadron Collider LHC at CERN in Geneva protons are accelerated to 7 TeV and brought to collision. To which energy should one accelerate a proton beam in order to reach the same reaction energy on a proton at rest?
