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NBM Dwvyer REDM

RREA reproduce themselves by
positron and gamma feedback
mechanisms.

Positrons are created by RREA
bremsstrahlung and propagate in
direction opposite to RREA

propagation. Consequently, positrons
create secondary avalanches at the

beginning of the cell.

Does not work in observable
conditions.
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R. Dwyer J. A fundamental limit on electric fields
in air // Geophysical Research Letters. — Vol. 30,
no. 20. — URL:
https://agupubs.onlinelibrary.wiley.com/doi/abs/
10.1029/2003GL017781.
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(NI’M RL-TGE model concept

* Thundercloud electric field structure is considered to be complex:

There are a lot of cells with critical electric field and different
electric field direction

* Gamma dynamics is similar to neutron dynamics in nuclear reactor:
v' A gamma propagates through the thundercloud
v’ It gives birth to a runaway electron within a cell
v Runaway electron produces RREA
v RREA radiates new gammas
v’ These gammas propagate through the thundercloud
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(NI'M RL-TGE model concept

A gamma propagates through the thundercloud

T
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(NI'M RL-TGE model concept

It gives birth to a runaway electron within a cell
Runaway electron produces RREA

I
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(NI'M RL-TGE model concept

RREA radiates new gammas
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(NI'M RL-TGE model concept

These gammas propagate through the thundercloud
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(NI'M RL-TGE model concept

And everything goes on and on
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Reactor model simplified simulation
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MM Monte Carlo simulation results
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Gain coefficient = local multiplication factor
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(NI’M Completely random reactor model assumptions

* The electric filed is completely random, which makes gamma production isotropic.

* There is noncritical electric field between critical cells, consequently, there is only gamma
exchange between cells.

 Critical electric field is the same everywhere in the cloud.
* All gammas have the same energy.

 Runaway electrons have the same energy.

e Air density is the same throughout the cloud.

 Gammas leave the system in two ways: fly out of the thundercloud or produce a runaway
electron.
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(M'M Fquation

Under such assumptionsgamma dynamics can be described with the following equation:

on

DANn-c2n+vc2n=—
ot

rl|z=0,h =0

N|r=p =0

S , A e s -
Here n(r ,t) -gamma concentration, D = CT - diffusion coefficient, A-mean free path length for

gammas, X = - mean macroscopic cross-section of runaway electron production by gamma,

Ay>e-
v — local multiplication factor.
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MPM | ocal multiplication factor

Local multiplication factor is mean number of gammas generated by one

gamma in a cell:

B ARREA L \l
v = RREA FORMATION PROBABILITY - - | exp -1
)‘e—%v ARREA

{

L — cell length.

RREA FORMATION PROBABILITY — average probability of RREA creation in a ,

critical cell by gamma, also considering electric field geometry. 1_\

22mc?

ARREA = - Gurevich characteristic length of avalanche exponential

growth (m, e —electron mass and charge, E — mean critical electric field).

}\e_el: - gamma production by runaway electrons length.
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MPM The equation solution

The first member of the equation solution dominates:

2.405 - r nZ
n(r,z,t) =ng - J, ( - >Sin (7) . eft,

Ac (3(v—1 2.405) 2 2 o
where € = —C( v=1) —( ) — (E) )-global multiplication factor.
3 A/ly_,e_ a h

Consequently, thunderstorm gamma flux comes out as follows:

e 240571\
— h 0 ]O a e

B Acon(r,z,t)

|O(r 1)} z=0h 3 0z

z=0,h
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MPM Reactor explosion criteria

Reactor becomes critical when number of gammas grows
exponentially, or in other words, when £ > 0. Consequently,

there is a following reactor explosion criteria:

Moo [ (2.405\° 102
y—oe n
o> 2 ( )+(h) 1

Or, considering the formula for local multiplication factor:

22mc? L Adyo [ (2.405\° /72
RREA FORMATION PROBABILITY - | exp -1 > +(3) |+1
eEhe_>y ARREA 3
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(fll’M Reactor thundercloud gamma radiation

Reactor thundercloud gamma radiation is quasi-isotropic

Gurevich or Dwyer thundercloud Reactor thundercloud
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(NI’M Gamma flux dependence on time

Considering cosmic ray flux gamma concentration dynamics is following:

0 .
dn = Reosmic dt +n-e-dt
ot
n(0) = ng

Here n — gamma concentration, € — global multiplication factor.

Consequently:
t
MNcosmic €™ — 1

ot g

n(t) = nget +
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(NI'M Gamma flux dependence on time

If € > 0 then there is the following time dependence:

| _I\_IL_meer of gamma

Time
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(NI'M Gamma flux dependence on time

fe<0 OMNcosmic

ot

< &ng then there is the following time dependence:

I\lumber_ of gamma

Time
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(fll’M Gamma flux dependence on time

fe<0 OMNcosmic

ot

> eng then there is the following time dependence:

Number of gamma

Time
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MM TGF ceograph

In reactor model gamma dynamics depends on thundercloud size and
electric field value. Consequently, TGF requires huge thunderclouds.

30. -
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o
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Briggs - 2013 - Fermi GBM Observations of Terrestrial Gamma-ray Flashes ( TGFs )
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(NI’M Reactor radio signal

RREA radio signal generation is quasi-uniform throughout the
thundercloud in reactor thundercloud.
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(fll’M How to tricger TGF?

To burn only during hundreds of microseconds
reactor explosion should be started initially
with significant positive global multiplication
factor.

List of TGF triggering hypothesizes:

 Undercritical thunderclouds collision

* Charge layers mixing by lightning

* Or simply low gamma fluxes are invisible
from space.
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MM TGF dynamics in reactor model

| #6
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TGF triggers discharges in cells.
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Discharge at some cell can stop TGF
making € < 0.
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Consequently, multi-TGF is possible in
reactor model.
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(NI'M Which came first: TGF or lightning?

In reactor model (hypothetically): o

* TGF can cause lightning by triggering
discharges.

* TGF can be terminated by lightning.

* Lightning can cause TGF by mixing
cloud layers.
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(NI’M Runaway breakdown (Gurevich 1992)

L
o

Electric field might give to
relativistic electron more energy
than it wastes on interaction with
air.

Such electric field is called critical
electric field, accelerated
electrons are called runaway
electrons.

Critical electric field

Energy loss, MeV cm**2 / g
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(NI’M Relativistic runaway electron avalanche

Runaway electrons produce new
runaway electrons by collision with
air molecules’ electrons.

The law of the RREA growth:

[L~50m

K

A

Geant4 simulation of RREA.
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(NI'M Reactor thundercloud gamma radiation
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On ground gamma distribution

0.0200

On-ground quasi-isotropy
hypothesis experimental
observation is complicated due to
air attenuation.
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From 1 km isotropic gamma
source looks like looks like
directed source with Compton
scattering.
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Isotropic source Geant4 simulation
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IlﬂM

Reactor thundercloud gamma radiation
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