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An attempt is made as to analyze the statistical methods of making deci-
iions on the high-energy particle identification. The Bayesfan approach is
shown to provide the most complete account of the primary discrimfnative in-
formation between the particles of various types, it does not impose r'l_gjd
requirements on the density form of the probability function and ensure; the

account of che a priori information as compared with the Neyman-Pearson

/’“

approach, the minimax technique and the heristic rules of the decision 1i-
mits construction fn the variation region of the specially chosen parameter
The methods based on the concept of the nearest neighbourhood are shown to
be the most effective one among the local methods of the probability
function density estimation. The probability distances between the
training sample classes are suggested to make a decision on selecting' the
high-energy particle detector optimal parameters. The method proposed and
the software constructed are tested on the problem of the cosmic radiation
hadron identification by means of transition radfatfon detectors (’the “PION®

experiment).
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05 o2EKTHBHOCTY CTATMCTHMECKIIX METOLIOB
VTERTASHKATIET JACTUT BHCOKMX SHEPIMH

B padoTe npemIpMHATA MOUHTKA AHAMM3A CTATHCTHYECKIX M-
romoB OPHHATUA pPelleHiii 0 MEeHTAMKAIM THRCTHN BHCOKMX BHepIwi.
iloxasano, 4To B cpaBHeHmH ¢ nomxomoM HeimaHa-IMpcoHa, MUHH~MAK-
cHr{t MeTOIEKOM M SBPMCTHYECKUMZ IPABAIAMI [OCTDPOSHHA IDAHHUI De-
meHusd B OGIACTH M3MEHEHNA CclerfaibHO BHODAHHIOIO mapameTna, Galf-
€COBCHItf MOZXOR oCecievuBaeT Handonee noymmil yveT nepeuuHoif pas
JuyiTesibHolt MHDODMAIIAE MEeXLY WACTULAMY DASHHX THIIOB, He Hajara-
eT M. CTINIX TpeGoBakuWil Ha BmE IIOTHOCTH Jyiximilt mpasnonomodusa u
odeclnewnBaeT yyeT aupropHo#t uHOopMaumMHE. B pacoTe HOKA3AHO, YTO
Cpemy JIOKAJNBHHX METONOB OUEHKW IIOTHOCTH BEPOSTHOCTH (yHKIMM
IPaBRONOZOOUA Hambojee HPHEeRTUBHH METONH, OCHOBAHHHE HA KOHIEN-
ot “GmpRaiimero cocencTea”. s MPHHATHA DEMeHAA O BHOODE ONTH~
MAJIBHHEX 11apaMeTnoB NeTEKTODOB YACTHI BHCOKUX SHEpImf MpemioxeHO
HCIIOJIB30BATh BEPOATHOCTIHE DACCTOAHMA MexIy Kiaccami ofyuawnuei
BHOOPKHM. Ilpemnaraenide MEeTONH ¥ COSIAHHOE MAaTeMaTHyecikoe oJeC—
[IeYeHNe IPOBePeHH Ha 3afave HOCHTHIMRAIAYM ANPOHOB KOCMEYECKOTC
USIyYeHNA ¢ IIOMOWBD JETEKTOPOB HEePEXOIHOT'O M3JydeHmA (sKcmepi-—
MeHT "lxos"),
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Introduction

The spectrometric and shower installations as well as the terenkov
covnters are used for the high-energy particie {identification. However,
at very hich energies (> 1 TeV) it is difficult to achfeve the high accura-
cy of {dentification at reasonable losses, therefore the methods based on :
the registration of the transitions radiation occurring at the relative par- -
ticle passage through the laminar medium have become widespread 1

The peculiarity of the identification problems consists in the impossi-
bility to confine oneself to various hypotheses realization prcbability pre-
dictions - tﬁe, final choiée of the decision on the particle type is requir-
ed 2 . The algorithm the decisfon choice 1s realized with is calied a
decision rule or a classifier.

The main premise of the classification theory methods application to the
experimental information processing problem is the ex{stence of the experi-
mental installation imitation model and the randomness of the output vari-
able 3 . The qualitative judgement on the registered particle type is the
output variable in the {dentification problems.



The statistical decision ontimization is connected with the choice of
the decision rules m'!n‘lmiz"lng the “Jdentification errors and losses due to
them.

© Assume that the space of the possible states of nature (or simply states)
consists of two mutually exclusive events A and B. The event A - a particle
of type a traversed the installation, the event B - a particle of type b.
The space of the possible statistical decistons will also consist of two
elements Y and E » where 'i is the decision on that the A type evenf
is realized, B - the B type event. The relationship between the state
and decision spaces is realized by means of the observations of the experi-
ment outcomes.

The Z outcomes space comprises all the possible values measured in the
experiment if the A and B events are realized. The decision rule puts a de-
finite element of the decision space in correspondence with each element
of the Z set.

A - if a definite condition holds
d(z) -

B - in the opposite case

for all the Z € Z

If one can enclose the set of values answering the a and b type particles
in the nonintersecting regions, then it is passible to formilate a condition
prov{ding the correct classification. However the situations are encountered
much more frequently when the distributions of the measured values overlap
more or Jess sionificantly, them the following event combinations are pos-
sible:

AUA , BUB, AUB, BUA
The first two combinations correspemd to the correct Mfiutin.
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the last two ones Tead to the ervors and lTosses due to them arising when
the type b s attrituted to the pairticle a and vice versa.

The principle impossibility s to reduce siaultanseusly beth the errors
to the desired levsl leads to some subjectivity fa the optim] statisticsl
dectsion selection.

According to the most wide-spresd technique of Neyman-Pearson 4, the
error of the wost Taportant event 1s fixed at the minfmum level (usually
1%, 55). The rules mininizing the altermative error (the one of the second
kind) will be the qitiul decision rules in this approach. Amother approach
1s connected with the selection of the dectisisn rules mintmizing the lavrgest
possible error 5 . The Neymn-Pearson approach from the very begimning
{ntroduces an asysmetry into the space of the possible decisions, the mini-
max approach protects from very large losses, but in the meanwhile the pos-
sible compromise between the risk and advantage 1s lost. '

The most general approach of the statistical decisfons optimization
(the Bayestan approach) formalizes the account of all the losses expected.
The total account of all the information available concerning the experiment,
both the one known before the experiment - the a prior{ informtion, and
the one obtained after the experiment - the posterfor information, {is the
purpose of the optimization anzlysis from the Bayesian positions. The Baye-
sian decision rules are constructed proceeding from a functiomal minimiza-
tion representing the losses averaged in all the possible event combimations.
There are no decision rules better than the Bayesfan one for all the possidle
events simultaneousiy 6 L _

Recently, the nomparsmetrical decision rules 7, 8 were sugguud to
{aterpret the data from the cosmic ray physics experimental iastallations -
with the most evident advantage consisting fa the total accouat of the dis-



crivirative informtion betveen the events of varfous types. The nonpara-
metrical decision rules ave based on the prebability demsity function local
. esgi-tin. they do net use any 2ssumption as to 1ts form, operate with the

_. -primary experimints) information and do net dea) with the hauristic cheice

of any parsmeter. The desire te demsnstrate that the Saysian parametrica)
precedures are sisple and economical in the perfermance and provide the
mst reliadle 1dentification, is the purssee of the present amiysis.

1._The Bayesian Decision Rules

The Sayesian appreach isplies the deterwination of the prebebility and
cos. measures on the state, decision and expariment sutceme speces. There
are several ways of constructing such msasures 9 , the mest wide-spresd
one of which being as follews:

1) The cost masere V" (A, B) 1s determined on the direct product of the
state and decision spacss - the Tosses In the case of the B decisien,

the Tosses 0 be ze70 at the covrect classification and fdemtical at sny
ervor - the so-called siaple function of lesses:

v(AR)=v (8,B)-0 (1)

v (AB)y=v (B, A)=1
2) The messare P(A) 15 dstorntand on the space of the passible states -
papﬂﬂ probability of the A type svent reslizstion, in eur case - the
mﬁ-ﬁﬁoammﬂﬂuhhmmm.ﬂnhm
vieus mest relfsble anperiamt. If such asporisents weve net porformed
mﬂe.hﬁtanﬁﬁMnhw-ﬂﬁm
| P(A) = P(B) = 1/2 (.2)



The a priori probabilities may be considered also as the weans of "weighing*
the errors. . _
3) The conventional measure (the 1ikelihood function)‘ P(Z/A) s d'et‘or-
mined on the space of the experiment outcomes - tlle Z nlm obserntiou
probability, 1f a fs the type of the particle *. The poculfarity of the
procedure of the statistical decisions on Mentification A8, tlm. the con-
ventiomal measure s set by muns of the 'lnitation cxpcrinn; resu-lt_s. The
way of the 1ikelihood function estimation by the classified outcome sets
(the training samples) is the key one in the problem of ‘the }'s‘;t'a_'t;istni.éﬂ;i’_gg-"
cisfons and will be treated fn the next paragraph. ' f e
The information obtained in course of the cxperimt 1: sumﬂud in ,
the Tikelthood function, the information known before the_expm-mt = in
the a priori density. One may accusulate all the information avatlable (by
means of the Bayesian theorem) and fatroduce the so-called posterior mea-

sure 10

P(A/Z)=cp(2/A)p(A) (13)

The posterior density shows the probadbility of that the A event took
place, provided the value Z was observed ia the experiment. The normaliz-
ing mult:slier C s introduced for the posterfor measure to be probabi-
stic {1.e. to have the meaning of the probadility density).

Ustzg the condition "

P(A [2)+p (8/2) ! )

* In the gemersl case Z istlnnctornln Z. 3(2“ a,...Z_n)

Tln A and B mfmacnimsnm



we obtain

ye =p(A)p(2/A)+P (B)P(2/B) 1.9

At the Bayesian approach the average losses are calculated for all the
points of the decision space. The average losses (or the risk R) of making
decisions at the points 7 and 'E have the following form:

R(A)=v (A, A)p(A[2)+v(B,K)P(B]2)

(1.6)
R(B)=v (B,B)p(BJ2)*v(A,B)P(A/2)
When using the simple function of losses (1.1)
R(A)=P(B/2) (1.7)

R(B)=p(A/2)

The risk to make a decisfion A according to the outcome obtained is
t-ual to the B event posterior probability. The risk to make a decision B -
to the A event posterior probability. Hence, the decisfon rule minimizing
the risk at all the peints Z of the experiment outcome space will look

1ike

d (@) - & PAZ)-POL) -

in the opposite case

The rule (1.8) 1s callad the rule of the posterior density maximm. In ob-
seiving the Z outcome the particle is related to the type ensuring the
posterior density maximum at the point = . Meking use of the ratio (1.3)
one may obtain the Bayesian decision rule of the 1ikelthood function maximum:



K 1 p(A)p(2/A)>P(B)p(2/B)
¥

d(z) - (1.9)
in the opposite case
If the a priori probabilities are equal, then
- * if plz/A)>p(2/B
B in the opposite case

The event s referred to the type ensuring the 1ikelihood function maximum

at the point Z

2. The Likelihood Density Function Local Estimations

As we have seen, the Bayesian decision rules are based on the calculation
of the 1ikelihood function density. Assuming the latter to be known, one may
directiy make a statistical decision after calculating its value for various
particle types and compare the obtained magnitudes.

However, as it was alréady mentioned, all the information on the 1ikeli-
hood function is contafned in the training samples - che imitation experiment
realization sets for the particles of various types.

If the 1ikelihood function form is known, the experimental information
vector dimensionality is not large and (or) the condition of the conventional
density parametrical independence holds:

P(E/A)=f%(21/A)'F5(23/A)xu.pn(zn/A) (2.1)

then the maximum Tikelihood method may be applied to estimate the likelihood
function unknown parameters. If the condition (2.1} does not hold, then the
computational difficulties due to the account of the correlations between
the Z vector components make the application of‘the maximum 1ikel{hood



method inefficient.

The most general (nonparametrical) approach not connected with any sim-
piifyinb assumptions and requiring only the continuity of the likelihood
function, is based on the density local estimation at the points 52 of the
experiment outcomes space 1}

The-density tocal estimation is based on the foilowing assumptions:

1. The space of the experiment outcomes may be divided into St regions
centaining ati the possible re#lization of the experiment.

2; The probability of hitting the region Qi s equal to the ratio

3ii¢/ﬁ4 , where [{i s the number of outcomes involved in the { -th
~egion, N  is the total number of outcomes.

3. the arbitrary distance measure may be introduced into the outcoﬁe
space.

in case of items 1-3 being true we shall obtain the local density estima-
tion in the SLi region in the following form:

pu(Z/A)n = Ki/NG: .

where (b, is the S2:.  region volume.

In dividing the space into rectangular cells of identical sizes (the
hystogram method with the constant spacing) the local estimation is connected
with considerable difficulties,

-l
Indeed, let us assume the vector Z dimensions to be equal to 5. To

ground statistically the hystogram method at least 5 values are required to
_ get into each cell 12 . If &1v1d1ng the variation region of the if vec-
tor each conponegt into’at[ﬁeast ten intervals, ‘then the total number of the
cells will amguit +6°10° - ani: the Twitation experiments minimal number - to
. 105, R .H_i,:. E .A.v.a | fj;f“f?i .
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The statistical provision of various ce'ns. is not identical and the den.
sity inside the N-dymensicr2l cube (cell} mey vary considerably.

Much more attractive is the idea to construct the density estimations
using the N-dimensional hyperbail wiln the centre at the point of intersst.
In this case there. is no need to keep in memory *he "density library", each
time the densities will be caliculated anew. The asymptotic properties of
tne estimations are such, that one may limit himself to a much laess number
of traintng sample sizes tham in the first case 13 . The 2L reuvcan ra,
vary, for the density estimations at each point to be identicalily proviged
statistically ~ e.g. the regions may be required to contain equally K ve:-
tors from the training sample. The .Qi, reaion voiume wili thus cepenc o~
the space dimensians, the training sample size, the [  parameter and
the lotation of the -2': hyperball centre.

There s a iaroe variety of the density nonparametrical estimations, tue
principal ones ciffering 7n the way of the training sample applicatior "
first rule of the KNN * i4 does not make any difference between the
training sample classas. Tne .Q,‘L regions are constructed SO as to 3nvi .+
KK wembers of the unaited sampie, ',hé density estimatfon s obtainec -+

the following form:

P, 'T/A)= Ka/Nax ®i
P.iZ/B) = K&[Nyx & Ka + K& =K

(P;_ is the S: region volume

-
[a%]

No. and N ¢ are the tota) numbers of the trainine sample alternativs
classes. Ka and (& are the numbers of representatives of the A ar:

—p
E} classes among the K nearest neighbours of the Z vector.

. - -

* KEN - K nearest neighbours.

11



The second rule KNN 14 implies the construction of varicus regions
2iA and Qi.e » each involving K members of various training sample

classes:

Pi(Z/A)= K/Na~=dia | il

P.(Z/B) = K/Np * dis
Pia and D;p are the S2ia and S2ie regions volumes.

The second rule is usually used in the modified variant i:y calculating
and then averaging the density for various K 15 . The K parameter value
is determined by the training sample sizes and the true densities. Usually
the optimal K is equal to the square root of the training sample size:

KoP{ ~ m (2'5)

In the computational aspect the distance rang'lng from the studied point
to al1 the training sample members is 2 process that requires the most time
expenditure in the KWN  rules. '

There is no need to calculate the probability densities in the explicit
form when classifying, as in the Bayesian decision rules it is enough to
know only which of the alternative classes ensures the highest density.

Substituting the density values (2.4) and (2.5} in the Bayesian decision
rutes maximizing the posterior risk and the likelihood function {1.8),
(1.9), we shall obtain the KNN, and KM, decision rules":

* The relation between the XNN decision rules and the Bayesian ones is ama-
Jogous to that between the optimal estimations and the general population

parameters, therefore the KNN rules are sometimes called "empirical Bayasian
rules”.
12



dK (z) . : if Ka > Kg ) P(A):p(b) (2.6)
B  in the opposite case KathKp= K

de (2) = & 7 Rea<Rue , P(A)=P(B) (5
B in the opposite case

Rka and RKB are the distances to the K-nearest neighbour for the
classes A and B.
The second decision rule of the nearest neighbourhocd KNN, allows one
to take account of the a priori probabilities directly:

K it p(A)/Rka > P(B)/Rkp (2.8)
: :

ir the opposite case

d(2) -

Both the Euclidean and the special metrics taking account of the data

structure may be used as a distance function 16

3. Hadron Identification by Energy Release in the Transition

Radiation Detector

The "PION" installation has been functioning in the high-altitude station
"Aragats" of the Yerevan Physics Institute ever since 1977, one of its
purposes being the cross section measurement of the cosmic radiation flux
hadron interaction with various nuclei. Five trays of the transition radia-
tion counters are used to identify profons and | -mesons, each consisting
of a radiator and a multiwire proportional chamber 17

To calculate the expected energy release of pions and nrotons a detailed
imitation model of the installation is constructed 18

The imitation programme was used to ‘forn the training sample that would
help to outll'lne the decision boundaries in the variation space of the choser

13



parameter. These boundaries determined the recions {the point sets) of deci-
sion making and the region o% uncertainty. One may achieve the great reitabf-
14ty of the identification by enlarging the uncertainty reafor, but this
leads to reducing the detection efficiency because of the refusad tn make

a statistical decision wnen the parameter hits the uncertainty reaior. Tne
solution of this contradiction between the reliability and efficiency, ty-
pical of the statistical decisions problem depends in mamy respects on the
identification parameter chosen.

The geometric mear. is one of the first parameters suqgested. This parz-
meter used allows one to cut off somewhat the distribution tails as comoared
with the arithmetic mean and hence to contract the uncertainty region bounds-
ries 19 , but the scalar Z = \J‘Z, x 7, x.Z,substitution for the vector
response i{ =-(.Z1) Z a,...Z’n)r'esults in the considevable loss of the dis-
criminative information.

Ref. 20 shows tnat the use of the information from all the instaliation
trays allows one to enhance significantly the reliability of the statistica:
conclusions. The parameter that takes into account the information from all
the trays of the transition radiation detector is the likelihood ratio

L(Z)=Pa(Z/T) P (T/p)

(3.1}
al A
where Pg  and Pp  are the local estimations of the joint distridution
.density of the values Z, ,Z, ..., Zn , provided that the particle re-
Jeasing the energy is a pion or a proton, respectively.
‘The likelihood functions P%  and F%p are estimated by the training
samples obtained in the imitation or calibration experiments. The estima-
tions are cérried out by the hvstogram methods in the conventional paramet-

rical independence approximation of the likelihood fumction:

14



PR (Z/5) = PR, (24/5) » Pae(22/5) - Pra(20)5)
. {
Fe(2]P) = Bo.(2:1/P)x Pe, (22 /P) =+ Pru(zn/P)

3.2)

The application of the Bayesian approach, in particular the nonparametri
cal decicion rules barted on the concept of the nearest neighbourhood, to th
problem of the pion anu proton identification, doe: not impnse rigid re-
quirements {of the (3.2)type} on the distribution function density type and
estimates the local density more efficiently.

The technique of calculating was as follows:

1. The formation of the training sample, consisting of the imftation oro-
gramme 18 realizations.

2. The identification of the "pseidoexperimental" vector sets - also the
simulation programme realizations.

3. The determination of the percentage error in classifying the “proton"
and “meson" events.

The calculations were executed with the use of the first and second de-
cision rules KNN (2.6), (2.8). The training sample size, the classifiers
parameters. the number of the installation trays, the energy of particles
all these varied. ‘

Besides, the distance probability measures between the training sample
classes were calculated.

Via Bhattacharya distance 21

os ' (3.3,
Pa=- SP(Z/5) Ps(Z]r)dz
. -oo
_ one can express the upper and lower limits of the classification eipected

error

18



Zs = 12 ZXP(“PB) (3.4)

Enz - Yo (1-beg)'?

In the general case the integral (3.3) is calculated by the numerical
methods. If the distributions functions are close to the normal ones a;ld
the covariance matrices of both the training sample classes coincide, then
the Bhattacharya distance coincides with the Mahalonobis cne 22 , that

can be calculated analytically
(3.5)

P*= (Fo- Aa) = (Mo~ fix)

where F p and ﬁg are the averages of the training sample classes,
Z  is the common covariance matrix.

Figure 1c, d presents the probability distance depende;\ces on the par-
ticle energy and the number of the transition radiation detector trays.
Naturally, the separability of the training sample classes improves and the
probability distance enlarges with the increase of the experimental informa-
tion vector dimens.icnality. The construction of the detector was chosen so,
that the . largest distance and hence the best discrimination are achieved at
the energy 1000 GeV.

Figure la, b shows the corridors czlculated by formulae (3.5), ~where the
classification expected error * must be involved.

In registrating the transition radiation by 5 trays of proportional cham-
bers the classification expected error is equal to »c 10% (the energy
1000 Gev), that allows one to classify reliably the cosmic radiation protons
andf;ﬂons. The results of the classification by the nml and KNN, decision

* The average error (P{T )+ P(P& )/2 is meant, the cost of misclassifica-
tion_coincides with its probability when using the «imple loss function.

16



rules (the training sample size is equal fo 500, the control sample size -
to 500, too) are presented in the same figures. It {s obvious that the
KNN, rule provides noticeably better results than the ml one, due to a
more precise estimation of the 1ikelihood function .

The dependences of the efficiency and error of protons and gions fdenti-
fication on the K parameter in the runl and KNN, rules are presented in
Fig.2. The training sauiles sizes are equal to 200. The classification re-
sults show that the training samples volume {is safﬂcient and that the al-
gorithms convergerce is attaired at K = vN

Fig.3 shows the results of the KNNz rule comparison at K = 13 with the
curves of the efficiency dependence on the ciassifica*ion expected error,
the geometric mean 17 applied as a parameter, At the error fixed, one
may achieve a higher efficiency of registration in case the nomparametrical
‘decision rule is applied. If, e.g. one limits the error P(.‘IT TD') to 102,
‘then the pfon detection efficiency will be equal to 75 and 85%, respective-
1y (in detecting by four trays).

Conclusion

The statistica) decision optimization in the high-energy particle iden-
tification problems is achieved in the following ways:
1. By applying the Bayesian decision rules, that minimize the expected
average losses and take account of all the discriminative information
between the particles of various types and of all the a priori information
available, .
2. By the 1{kelthood function nonparsmetrical local estimtion, allowing
one to reduce substantially the training samples sizes and to enhance the
estimation accuracy dewe to the special selection of the hysgognn cell

17



forms.
3. By applying the distance probability measures between the training sample
classes for the purposes of planning the experiment.

The author {s sincerely grateful to N.Z.Akopov, T.L.Asatiani. V.V.Avakian,
A.T.Avundjian, A.M.Dunaevskii, S.P.Kazarian, E.A.Mamidjanian, S.G.Matinyan,
A.G.0ganesian and G.G.Ovsepian for the useful discussions and valuzble

remarks.
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