

Parameters of the Aragats Space-Environmental Center monitors as measured at start of 24thSolar Cycle

A.Hovhannisyan,

A.Chilingarian, B.Mailyan, T.Karapetyan

harmen@crdlx5.yerphi.am

Overview

 Calculation of Mean Multiplicity Coefficients for ASEC Neutron Monitors – PP02.
 PARAMETERS OF THE ARAGATS SPACE-ENVIRONMENTAL CENTER MONITORS AS MEASURED AT START OF 24 -TH SOLAR CYCLE

A.Chilingarian, A.Hovhannisyan, T.Karapetyan, B.Mailyan, A.Reymers

- Daily variation in intensity of different species of secondary cosmic rays as measured by the particle detectors of Aragats Space Environmental Center at minimum of solar activity HCR9. DAILY VARIATION IN INTENSITY OF DIFFERENT SPECIES OF SECONDARY
 COSMIC RAYS AS MEASURED BY THE PARTICLE DETECTORS OF ARAGATS SPACE
 ENVIRONMENTAL CENTER AT MINIMUM OF SOLAR ACTIVITY
 A.Chilingarian, V.Eganov, A.Hovhanissyan, T.Karapetyan, B.Mailyan, A.Reymers
- Barometric coefficients for different dead times neutron monitors electronics and for different energy threshold of muon scintillation detectors – HCR8. BAROMETRIC COEFFICIENTS OF THE NEUTRON MONITORS LOCATED AT SLOPES OF MOUNTAIN ARAGATS CORRESPONDING TO THE TIMES OF TERMALIZED NEUTRON COLLECTION

A.Chilingarian, A.Hovhanissyan, T.Karapetyan, B.Mailyan, A.Reymers

Calculation of Mean Multiplicity Coefficients for ASEC Neutron Monitors

Time series of Nor-Amberd Neutron Monitor, Different Dead-

Times

COSMIC RAY DIVISION Alikhanyan Physics Institute, Alikhanyan Brothers 2, Yerevan 375036, Armenia

www.aragats.am

Table 1 NANM, Dead Time-1250mus, Correlation Matrix (%)

Det	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	100	15	4	3	3	5	1	-2	0	4	4	-1	-2	8	-1	2	3	1
2	15	100	14	4	4	-1	-1	0	2	3	3	1	1	3	0	5	3	2
3	4	14	100	12	5	3	1	2	3	2	0	6	2	1	-1	3	5	3
4	3	4	12	100	14	2	2	2	2	0	3	2	3	0	-2	2	2	4
5	3	4	5	14	100	16	4	3	5	0	6	2	7	1	6	6	6	2
6	5	-1	3	2	16	100	5	1	3	-1	2	1	2	3	8	3	1	4
7	1	-1	1	2	4	5	100	14	2	-1	-2	2	0	1	-2	0	0	0
8	-2	0	2	2	3	1	14	100	15	2	4	-1	3	2	-3	1	1	-1
9	0	2	3	2	5	3	2	15	100	18	6	5	-2	0	5	5	-3	0
10	4	3	2	0	0	-1	-1	2	18	100	16	4	1	2	3	3	2	-1
11	4	3	0	3	6	2	-2	4	6	16	100	17	6	3	3	3	2	4
12	-1	1	6	2	2	1	2	-1	5	4	17	100	3	0	1	-2	0	-1
13	-2	1	2	3	7	2	0	3	-2	1	6	3	100	17	5	3	-1	3
14	8	3	1	0	1	3	1	2	0	2	3	0	17	100	11	6	0	1
15	-1	0	-1	-2	6	8	-2	-3	5	3	3	1	5	11	100	12	5	5
16	2	5	3	2	6	3	0	1	5	3	3	-2	3	6	12	100	15	3
17	3	3	5	2	6	1	0	1	-3	2	2	0	-1	0	5	15	100	15
18	1	2	3	4	2	4	0	-1	0	-1	4	-1	3	1	5	3	15	100

Investigation of multiple detection of thermalized neutrons by neighboring proportional chambers

The model of experimental situation can be described as follows:

- Simulate 2 independent time series (X and Y) with means and variances equal to ones measured by Neutron Monitor proportional chambers; check that there is no correlation between counts.
- Change initial time series according to equations:

$$A = x + z$$
$$B = y + z$$

Where x and y belongs to X and Y and z is small constant addition (proxy of events registered by both counters). Instead of changing z value, it is more appropriately to change the p value-addition scaled to the mean count rate:

$$z = \frac{A+B}{2} * \frac{p}{100}$$

Where means of the random processes **X** and **Y** (proxies of 1 minute means of proportional chamber count rates).

- Calculate time series A and B for different values of p.
- Calculate the correlation coefficient for each value of p.

Dependence of correlation and p-value for ARNM and NANM

Mean Multiplicity Coefficients of Neutrons

$$\overline{m}^{i} = \frac{N_{0.4}^{i}}{N_{1250}^{i} - N_{double}^{i}}$$

	Section1	Section2	Section3	NM Median
ANM	1.41±0.009	1.40±0.008	1.37±0.009	1.40
NANM	1.44±0.013	1.43±0.012	1.42±0.012	1.43

The dependence of mean multiplicity on the cutoff rigidity with Aragats and Nor Amberd neutron monitors mean multiplicities superimposed (measurements by ship borne 3NM-64 of IQSY type in December 1966 – April 1967, Kodama & Ishida, 1967)

Daily variation in intensity of different species of secondary cosmic rays as measured by the particle detectors of Aragats Space **Environmental Center at minimum of solar** activity

Comparison of daily changes of secondary cosmic rays detected by detectors sensetive to neutral (ANM, SNT 60 cm) and charged (SNT 5 cm) fluxes. Aragats, 3200 m

Comparison of daily changes of secondary cosmic rays detected by detectors sensetive to high (AMMM) and low energy charged (SNT 5 cm) fluxes. Aragats, 3200 m

Comparison of daily changes of neutrons at 3200m and 2000m above sea level

Maximum and minimum of daily variations of all monitors in percents and corresponding times in UT

Monitor	Amplitude and time of	Amplitude and time of
	minimum (s)	maximum(s)
АМММ	07:00, -0.39%	01:00, 0.41%
		12:00, 0.15%
SNT 5cm	04:00, -0.86%	11:00, 0.7%
SNT 60 cm	04:00, -0.53%	11:00, 0.53%
ANM	08:00, -0.12%	12:00, 0.36%
	18:00, -0.18%	
NANM	06:00, -0.47%	13:00, 0.64%
	20:00, -0.15	

Barometric coefficients for different dead times neutron monitors electronics and for different energy threshold of muon scintillation detectors

Barometric Coefficient Estimation Method

We have estimated barometric coefficient by following method. Changes in intensity secondary cosmic rays, where pressure changes from P0 to P, can be presented in a following way` \mathcal{I} where \mathcal{I} is barometric coefficient.

Calculation of Barometric Coefficient for Nor-Amberd Neutron Monitor

www.aragats.am

Calculation of Barometric Coefficient for Aragats Neutron Monitor

Calculation of Barometric Coefficient for Nor-Amberd Multidirectional Muon Monitor Section1

Calculation of Barometric Coefficient for Nor-Amberd Multidirectional Muon Monitor Section2

Calculation of Barometric Coefficient for Aragats Underground Moun Monitor

Barometric Coefficients of ASEC Monitors

MONITORS	BAROMETRIC COEFFICIENT	ERROR	CORRELATION COEFFICIENT	
Nor Amberd neutron monitor 0.4us	-0.695 %/mb	± 0.0133	0.997	
Nor Amberd neutron monitor 250us	-0.678 %/mb	± 0.0127	0.997	
Nor Amberd neutron monitor 1250us	-0.670 %/mb	± 0.0216	0.995	
Aragats neutron monitor 0.4us	-0.730 %/mb	±0.0185	0.997	
Aragats neutron monitor 250us	-0.713%/mb	±0.0183	0.997	
Aragats neutron monitor 1250us	-0.688%/ mb	±0.0182	0.996	
Nor Amberd multidirectional muon monitor(1) (upper layer)	-0.324%/mb	±0.012	0.992	
Nor Amberd multidirectional muon monitor(1) (lower layer)	-0.223%/mb	±0.0135	0.987	
Nor Amberd multidirectional muon monitor(2) (upper layer)	-0.323%/mb	±0.0136	0.991	
Nor Amberd multidirectional muon monitor(2) (lower layer)	-0.225%/mb	±0.0135	0.987	
Aragats underground muon monitor E>5 Gev	-0.08%/mb	±7.57E-05	0.924	

Comparison of obtained barometric coefficients with survey of Dorman and Kovalenko

Conclusions

- Calculated multiplicities, barometric coefficients and daily variations of the cosmic ray fluxes measured at the start of the 24 solar activity cycle will allow precise research of the upcoming solar events;
- The diapason of variation of the barometric coefficient from -0.73 to -0.08 demonstrates rather wide possibilities of the ASEC particle detectors to access primary rigidities from 7 till 50 GV

