PARTICLE ACCELERATION IN SOLAR FLARES

Vahe' Petrosian Stanford University Collaborators: Siming Liu and several past and present students SEE-2005, Nor-Ambert

OUTLINE

ACCELERATION: In General

I. OBSERVATIONS II. ACCELERATION MECHANISMS III. TOOLS OF THE TRADE

A. Kinetic Equations for Acceleration and Transport

- B. Turbulence Cascade and Damping
- C. Wave-Particle Interaction and Transport Coefficients

APPLICATION to Solar Flares

I. OBSERVATIONS

General Features

Where:Planets to Clusters of GalaxiesSpatial scales: 10^8 to 10^{25} cm and beyondTemporal scales:Milliseconds to GigayearsEnergy scales: 10^3 to 10^{20} eV

I. OBSERVATIONS

Observing Methods

Direct as CRs: Solar, Galactic, Extragalactic Electrons, Protons, Ions (Isotopes)

Indirect: Radiative Signature

Protons: Pi-meson Decays (70 MeV) Electrons: Brem., Compton, Synch. Broad Band, Power Law Spectra

Essentially all Radio and Gamma-ray emitters Most hard X-rays and some UV, Optical and IR

I. OBSERVATIONS

Cosmic Ray Spectrum

Solar Flare spectrum

II. ACCELERATION MECHANISMS

A: Electric Fields: Parallel to B Field

B: Fermi Acceleration

1. Shocks: First Order Fermi

2. Stochastic Acceleration: Second Order Fermi

II. ACCELERATION MECHANISMS

A. ELECTRIC FIELDS: \mathcal{E} (parallel to **B** field)

Acceleration Rate: $dp/dt = e\mathcal{E}$

Astrophysical Plasmas Highly Conductive: $\mathcal{E} \to 0$

Dricer Field: $\mathcal{E}_D = kT/(e\lambda_{\text{Coul}})$

 $\mathcal{E} < \mathcal{E}_D$: Energy Gain $\Delta E < kT(L/\lambda_{\text{Coul}})$

 $\mathcal{E} > \mathcal{E}_D$: Runaway Unstable Distribution Leads to

PLASMA TURBULENCE

1. Double Layers (DLs) in Earth's Magnetosphere

Multiple DLs: Difussive Process like

PLASMA TURBULENCE

2. Unipolar Induction in High *B* field of Neutron Stars Extreme Relativistic Energies: Pair Cascade

II. ACCELERATION MECHANISMS

B. FERMI ACCELERATION

Random scattering by moving scattering centers. Diffusive Process: Why Acceleration? More headon than trailing scatterings Phase space availability $\frac{1}{n^2} \frac{\partial}{\partial p} (p^2 D_{pp} \frac{\partial f}{\partial p}) \rightarrow \frac{\partial}{\partial E} (D(E) \frac{\partial N}{\partial E}) - \frac{\partial}{\partial E} (A(E)N) \quad (1)$

1. SHOCK ACCELERATION: (First Order Fermi) Energy Gain: $\dot{p} = \frac{p}{3} \frac{\partial u}{\partial x}$, $\delta p/p \sim U_{\text{shock}}/v$ Need Scattering Agent *i.e.* **TURBULENCE**

Diffusive Shocks

Scattering Rate D_{scat} Acceleration Rate $\sim (U_{sh}/v)^2 D_{\text{scat}}$

Relativistic Shocks

Most Energy Gained in First Passage Most Likely in High *B* Plasmas *e.g.* GRBs or AGN Jets Most of the Energy in Protons; How to convert to Electrons?

2. STOCHASTIC ACCELERATION:

(Second Order Fermi)

Plasma Waves or **TURBULENCE** Energy Gain; *e.g.* Alfven Waves: $\delta p/p \sim (V_{\text{Alfven}}/v)^2$ Scattering Rate $\sim D_{\text{scat}}$ Acceleration Rate $\sim D_{pp}/p^2 \sim (V_{\text{Alfven}}/v)^2 D_{\text{scat}}$

•For $V_{\text{Alfven}} > V_{\text{sound}}$ TURBULENCE more efficient than SHOCKS

•At low energies or high *B* fields $D_{pp}/p^2 \gg D_{scat}$ and TURBULENCE efficient accelerator

III. TOOLS OF THE TRADE

Some General Points

Acceleration of Background Particles (no pre-acceleration)
Radiating Sources (electrons and protons)
Losses at Acceleration Site (Coulomb, Synchrotron, Compton)

A. KINETIC EQUATION

Liouville or Boltzmann equation in limit of many "small" scatterings leads to

The General Fokker-Planck equation:

 $\frac{\partial f}{\partial t} + v\mu \frac{\partial f}{\partial s} = \frac{1}{p^2} \frac{\partial}{\partial p} p^2 \left[D_{pp} \frac{\partial f}{\partial p} + D_{p\mu} \frac{\partial f}{\partial \mu} \right] + \frac{\partial}{\partial \mu} \left[D_{\mu\mu} \frac{\partial f}{\partial \mu} + D_{\mu p} \frac{\partial f}{\partial p} \right] - \frac{1}{p^2} \frac{\partial}{\partial p} (p^2 \dot{p}_L f) + S \,.$

 $f(p, \mu, s, t)$; gyrophase averaged particle distribution

s is the distance along the background B field

S is a source term

1. Isotropic, High Energy Limit:

 $D_{\mu\mu} >> v/L \text{ and } D_{pp}/p^2$

$$F(p, s, t) \equiv rac{1}{2} \int_{-1}^{1} \mathrm{d}\mu f(p, \mu, s, t),$$

 $\frac{\partial F}{\partial t} - \frac{\partial}{\partial z} \kappa_1 \frac{\partial F}{\partial z} = (pv) \frac{\partial \kappa_2}{\partial z} \frac{\partial F}{\partial p} - \frac{1}{p^2} \frac{\partial}{\partial p} (p^3 v \kappa_2) \frac{\partial F}{\partial z} + \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^4 \kappa_3 \frac{\partial F}{\partial p} - p^2 \dot{p}_L F \right) + Q(p, s, t) \,,$

$$\begin{aligned} \kappa_1 &= \frac{v^2}{8} \int_{-1}^1 \mathrm{d}\mu \frac{(1-\mu^2)^2}{D_{\mu\mu}}, \quad \kappa_2 = \frac{1}{4} \int_{-1}^1 \mathrm{d}\mu (1-\mu^2) \frac{D_{\mu p}}{p D_{\mu\mu}} \\ \kappa_3 &= \frac{1}{2} \int_{-1}^1 \mathrm{d}\mu (D_{pp} - D_{\mu p}^2/D_{\mu\mu}) p^2, \quad Q(p,s,t) \equiv \frac{1}{2} \int_{-1}^1 \mathrm{d}\mu S(p,\mu,s,t) d\mu S(p,\mu,s$$

The acceleration and scattering times are

$$\tau_{ac} = 1/\kappa_3 \quad \tau_{sc} = 8\kappa_1/v^2.$$

A. ISOTROPIC AND HOMOGENEOUS

$$\frac{\partial N}{\partial t} = \frac{\partial^2}{\partial E^2} (D_{EE}N) + \frac{\partial}{\partial E} [(\dot{E}_{\rm L} - A)N] - \frac{N}{T_{\rm esc}} + Q$$

$$A(E) = \frac{\mathrm{d}D_{EE}}{\mathrm{d}E} + D_{EE}\frac{2\gamma^2 - 1}{(\gamma^2 - 1)\gamma mc^2}$$

$$T_{
m esc} = rac{L}{\sqrt{2}v} \left(1 + rac{\sqrt{2}L}{v au_{
m sc}}
ight)$$

$$\tau_{\rm sc} = \frac{1}{2} \int_{-1}^{1} {\rm d}\mu \frac{(1-\mu^2)^2}{D_{\mu\mu}}$$

2008-11-26

B. Magnetic fluctuations in Solar wind

B. ISM: Armstrong & Spangler (1995)

B. Turbulence Spectrum

General Features:

- Injection scale: k_{\min}
- Cascade and index q
- Damping scale or k_{\max}

Wavenumber

Kinetic Equation:

$$\frac{\partial W(\mathbf{k},t)}{\partial t} = \dot{Q}_{p}(\mathbf{k},t) - \gamma(\mathbf{k})W(\mathbf{k},t) + \nabla_{i}\left[D_{ij}\nabla_{j}W(\mathbf{k},t)\right] - \frac{W(\mathbf{k},t)}{T_{esc}^{W}(\mathbf{k})}$$

- $\dot{Q}_{p}(\mathbf{k})$: Rate of wave generation.
- T_{esc}^W : Wave leakage timescale.

 $\gamma(k) = \gamma_e + \gamma_p$: The damping coefficients.

 D_{ij} : Wave diffusion tensor.

B. Cascade of MHD Turbulence

Table 1. Donne Cascade Characteristics of Different Modes					
Mode	Isotropy	scaling v_k	D(k)	$\hat{W}(k)$	$ au_{cas}/ au_0$
$\mathrm{Alfv\acute{e}n}^{(a)}$	NO, $k_{\perp} \propto k_{\parallel}^{3/2}$	$k_{\perp}^{-1/3}$	$k^{7/2} \hat{W}^{1/2}$	$k_{\perp}^{-5/3}$	$5 imes 10^{-4} (k_{\perp}L)^{-2/3}$
$\operatorname{Fast}^{(b)}$	Isotropic	$k^{-1/4}$	$k^4\hat{W}$	$k^{-3/2}$	$1.3 imes 10^{-2} (kL)^{-1/2}$
\mathbf{W} histeler ^(c)	???	$k^{-1/4}$	$k^{9/2} \hat{W}^{1/2}$	$k^{-7/3}$	$2 \times 10^{-8} (kL)^{-4/3}$

Table 1: Some Cascade Characteristics of Different Modes

Table 1: (a) Goldreich & Sridahr (1995), CL02; (b) Iroshnikov (1963), Krachnan (1965); (c) Vainshtein (1973), Biskamp et al. (1999).

Cho & Lazarian 2002

B. Cascade vs. Damping of Turbulence

Párallel (and perpendicular) waves are not damped

C. Wave-Particle Interaction Rates

$$D_{ij} = \pi e^2 \sum_{n=-\infty}^{+\infty} \int d^3k \langle d_{ij} \rangle \delta \left(\boldsymbol{k} \cdot \boldsymbol{v} - \omega + \frac{n\eta_0}{\gamma} \, \Omega_0 \right),$$

C. Dispersion Relation for the Waves (Propagating along Field Lines)

$$(ck)^2 = \omega^2 \left[1 - \sum_i \frac{\omega_{pi}^2}{\omega(\omega - q_i/|q_i|\Omega_i)} \right]$$

Plasma Parameter:

$$\alpha = \frac{\omega_{pe}}{\Omega_e} = 1.0 \left(\frac{n}{10^9 \text{cm}^{-3}}\right)^{1/2} \left(\frac{B_0}{100 \text{G}}\right)^{-1}$$

Ion Abundance.

C. Dispersion Relation and Resonance Condition

C. Resonant Wave-Particle Interaction

C. Transport Coefficients

$$D_{ab} = rac{(\mu^{-2}-1)}{ au_{\mathrm{p}i}\gamma^2} \sum_{j=1}^N \chi(k_j) egin{cases} \mu\mu(1-x_j)^2, & ext{for } ab = \mu\mu; \ \mu p x_j(1-x_j), & ext{for } ab = \mu p; \ p^2 x_j^2, & ext{for } ab = pp, \end{cases}$$

$$\chi(k_j) = rac{|k_j|^{-q}}{|eta \mu - eta_{\mathrm{g}}(k_j)|} \quad ext{ and } \quad x_j = \mu \omega_j / eta k_j \,.$$

$$au_{\rm p}^{-1} = rac{\pi}{2} \Omega_{\rm e} \left[rac{\mathcal{E}_0}{B_0^2/8\pi} \right] (q-1) k_{\min}^{q-1}$$

C. Resonant Wave-Particle Interaction

Application to Solar Flares

General view 1. Electron Acceleration 2. Proton Acceleration 3. ³He and Heavy Ions Enrichment 4. Conduction Suppression

Model Descriptions

A: LT and FP HXRs (Heating vs. Acceleration)

A Simple Solar Flare

11032003, N09W77, X3.9

Chromospheric Evaporation

B: Spectral Breaks (Losses vs. Acceleration)

1. Electron Acceleration

1. Looptop and Footpoint Spectra

1. Looptop and Footpoint Spectra

2. Protons vs. Electrons

Dependence on the Plasma Parameter

2. Protons vs. Electrons

3. Acceleration of ³He and ⁴He by Parallel Propagating Waves

3. Acceleration of ³He and ⁴He by Parallel Propagating Waves

3. Dependence on $\tau_{\rm p}$

3. Acceleration of ³He and ⁴He by Parallel Propagating Waves

3. Ion Acceleration by Parallel Propagating Waves

3. Heavy ion enrichment

4. The Roles of Turbulence in the Decay Phase

Heating & Suppression of Conduction

$$\begin{aligned} \textbf{4. Suppression of Conduction} \\ \mathcal{F}_{cond} &= \frac{d \int \frac{1}{2} m v^3 \lambda \mu f v^2 d\mu d\phi dv}{dL} \\ \text{For Coulomb collision dominated cases, } \lambda = \lambda_{Coul} \propto v^4/n \\ \mathcal{F}_{Spit} \propto T^{5/2} \nabla T \\ \text{When turbulence is present,} \\ \lambda &= \frac{\lambda_{Coul} \lambda_{sc}}{\lambda_{Coul} + \lambda_{sc}} = f \lambda_{Coul} \end{aligned}$$

4. Suppression of Conduction & Heating
by Turbulence
$$\mathcal{F}_{cond} = f\mathcal{F}_{Spit}$$

 $f \equiv \frac{1}{\lambda_{Coul}/\lambda_{sc} + 1}$ For Transit-Time Damping, $\lambda_{sc} = v\tau_{sc}$ $f \simeq \frac{1}{aT^{5/2} + 1}$

The turbulence can also energize the particles with the acceleration time $\tau_{ac} \approx C \tau_{sc} (v/v_A)^2 \approx C \tau_{Coul} (v/v_A)^2$

Summary

- Most solar flares are associated with magnetic loops
- There are usually one LT with soft spectrum and two FPs with hard spectrum
- SA of particles in the LT region by PWT generated via the magnetic reconnection can explain most of the flare characteristics:

Soft LT + hard FPs; Energy partition between electrons and protons; Enrichments of ³He and heavy ions in impulsive SEPs; the slow decay of the LT in the gradual phase.

Conclusions

Plasma Wave Turbulence appears to be an important channel for the release of energy during flares & Stochastic Acceleration by it can explain many of the observed flare characteristics