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Abstract 

 
A comparative study of Bayesian and neural classification was done. The mathematical 

models of neural networks, trained in an evolutionary way, and Bayesian decision rules with 
Parzen-window  multivariate  density  estimation  were  applied  for  background  rejection in 

-y-ray astronomy experiments. 

A weight function was introduced in classification score to control the relative learning 
'quality' of  alternative classes. 

The use of a new quality function, instead of classification score, allows: 

• to avoid usage of Monte Carlo events with inherent misleading simplifications and 
incorrectness; 

• to directly optimize the desired quantity: the significance of source detection; 

• to obtain the complicated nonlinear boundaries of -y-cluster. 

The proposed technique can be used for background rejection in the constructing experi­ 
ments of  high-energy neutrino  point sources identification. 

 
Keywords: Neural networks; Multidimensional analysis; Data classification; Background 
rejection; Decision making 

 
 

 

 
1. Introduction 

 

The most difficult and most important part of high energy physic (HEP) data 

analysis is comparison of competitive hypothesis and decision  making  on  the 

nature  of  the  investigated  physical  phenomenon.  Modern  HEP  apparatus consist 
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of huge assemblies of electronic detectors that signal the presence and time of 
passage of ionizing particles or indicate the amoun t of charge left by a traversing 
particle. This bulk of diverse information on copious particles is assembled into 

'events' that  correspond  to a  single primary  particle  interaction. 
The first decision making problem arises from the necessity of  recording events 

on permanent storage media. The interesting new physics that is expected to 
embedded from the data analysis is very rare, and in  contrast  the  already well-
known noninteresting (background, noise) events are  much  more  frequent. The 

signal to noise  ratio can  reach  a value  of  10-9
• 

The so-called experimental triggers are used to make selection and reduce the 
amount of recorded data for subsequent analysis.  In  accelerator  experiments, 
several levels (steps) of data reduction are normally used, implemented in electron­ 
ics, firmware (special purpose processors) and software. Their time scale is limited 

by the requirement of minimization of the dead time (the time when the apparatus 
is unable to record events) and usually must not exceed tens of microseconds (for 
more details see (1,2)). 

After triggering, the raw data is converted into physical variables (masses, 
coordinates, momentums) via the procedures of pattern  recognition  and  estima­ 
tion, and it is then recorded. Subsequent analysis may involve  searching  for 
evidence of new physics, requiring complex decision making and refined noise 
suppression. 

So, the on-line triggering and off-line selection are the key procedures  in 
searching for new physics and are constrained by the enormous data amounts, 
collection speeds and negligible signal to noise rates expected in the next  genera­ 
tion of large accelerators (hadron colliders) known as LHC (large hadron collider, 
CERN, Geneva) and  SSC (superconducting  supercollider,  Texas). 

Modern  air shower experiments in cosmic ray physics  also are characterized  by 
a significant increase in the volume of data collecting and therefore  in  the 
processing time to analyze this event [3]. Thus both in accelerator and cosmic ray 
experiments new approaches are needed  which  attempt  to  reduce  the  decision 
time and make  the procedure  tolerant of noise  and missing   data. 

Another peculiarity of data analysis in high energy physics is the very intensive 

use of Monte Carlo simulations (4). At any stage of the off-line analysis  the 

simulated data are widely used; simulated data samples (training samples) are the 
basis of decision making on the nature of real events. (5). Thus the proper and 

complete utilization of simulated data is one of the crucial aspects of data handling 

procedures. The Neural Network (NN) approach meets alJ the requirements 

discussed above and provides promising applications for triggering and pattern 
recognition  at high  interaction rates. 

Some applications already exist in HEP: the NN method is very efficient for 
extracting features in hadronic data. World record performance is obtained for 
quark/gluon separation. The network is able to reduce  the  QCD  background to 
W/Z jets  by  a factor  of  20-30 (6,7]. 

Another example is connected with the most exciting discovery in experimental 

astrophysics of the last decade - the detection of a flux of high energy   particles 
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from point sources. Recently, ground-based experiments have demonstrated the 

ability to unambiguously detect y-rays from the  Crab Nebula  [8]. The  Cherenkov 

air shower technique detects an electromagnetic cascade in the atmosphere several 

kilometers long and a few tens of meters wide. The characteristics of the detected 

shower image (length, width of the flash, the reconstructed  ellipsoid  axis angles 

with respect to the optical axis of telescope, etc.) permits rejection of the isotropic 

background  more than  two orders of  magnitude. 

The first successful attempts to utilize the new classification techniques encour­ 

aged the physical community to widely incorporate the neural approach in  differ­ 

ent  HEP  data analysis. 

But further work is needed to enable NN to be properly simulated and used to 

improve the way the learning process  is  implemented. 
It is hard to derive the global concept of learning from biological observations. 

However, we believe that in nature the  brain  has evolved  by trial  and  error and 
that  the  coarse  structure  of  the brain  is determined genetically. 

Our concept consists in the application of the evolutionary methods for NN 

training, as the most popular backpropagation method of calculation of couplings 
appears to be unnatural. We suppose that the structure of NN is determined by 

evolution and is fixed, but the synaptic strengths  (couplings)  are repeatedly 

modified in a random search way which hopefully improves the situation until a 
successful matrix of couplings is  found. 

The random search is a universal powerful methodology, akin to the trial  and 
error method, and perhaps it forms the basis of the unpredictable efficiency of 
biological neural  nets. 

In our previous work, learning was performed in the framework of the Bayesian 
paradigm, by multidimensional a posteriori probability density estimation. This 
method was strongly dependent on the choice  of  a  particular  nonparametric 
method of density estimation with its free parameters, and was rather time-con­ 
suming. 

The NN classifiers can be analyzed as a special class of statistical pattern 
classifiers which are derived from the training samples, such as Parzen-window 
classifiers and K Nearest  Neighbor  classifiers. 

The NN and Parzen classifiers are trained on the same samples and, so, for the 
first time, we compare the two alternative classification  techniques on experimen­ 

tal data, thus providing the continuity in development of new information tech­ 
nologies. 

 

 

2. The nonparametric statistical inference 

 
We shall restrict ourselves to the binary  comparisons case,  that  is, comparisons 

of two, from many competing hypotheses at a time. Our example concerns a case 
when we want to realize the choice of one of two well-defined hypotheses - the 
background rejection in y-quanta detection with the Cherenkov  imaging  tech­ 
nique. 
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If the statistical statement consists in the existence of an analytic distribution 

family (like Poisson or Gaussian), appropriate to the problem in hand, we have a 

prescribed parametric model. For such parametric models a well-known concept of 

statistical inference consists in obtaining estimates of its parameters and verifying 

the validity of the chosen family [9]. 
The classification problem is traditionally described in terms of null and 

alternative hypothesis, critical and acceptance regions, first and second kind errors 
and level of significance [10]. 

The best  critical  region  is constructed  by means of  Likelihood  Ratio (LR): 
 

LR(x) =  p(x/fJ  ) , (1) 
p(x/ fJp,) 

where x is a many-dimensional observable, in our case - parameters of Cherenkov 
flash, p(x/fJ; ), p(x/fJ;r) - are conditioned on particle type probability density 
functions, obtained separately for y-images and proton images, fJ* is the Maximal 

Likelihood Estimate (MLE): 

M 

fJ* = argmax Eln p( xJfJ ), (2) 
8 i= l 

where X; are obtained from Cherenkov telescope calibration (possible only for 
background) or simulations (for signal events), and M is the number of calibration 
or  simulation trials. 

For almost all problems of inference, the crucial question is whether the fitted 

probability family is in fact consistent  with  the data. Usually, parametric  models 

are chosen for their statistical tractability, rather than for their appropriateness to 

the  real process  being studied. 

Of course, any statistical inference is conditioned on the model used, and, if the 
model is oversimplistic so that essential details are omitted, or improperly defined, 

then at best only qualitative conclusions may be obtained. In HEP very sophisti­ 
cated models are used, completely mimicking  a  stochastic  mechanism  whereby 
data is generated. Such models are defined on a more fundamental level than 
parametric models, and provide us with a wide range of outcomes from identical 

input variable  sets - 'labeled ', or 'training' samples   (TS). 

Usually, for experimental physics data handling, the Likelihood Function cannot 

be written explicitly, and we  deal with  implicit, nonparametric  models, for which 

no parametric  form of the underlying  distribution  is known,  or can be  assumed. 

The Bayesian approach provides the general method of incorporating prior and 
experimental information and formalizes the account of all  the losses  connected 

with probable misclassification and utilizes all the differences of alternative classes 
[11,12]. The decision problem in a Bayesian  approach  is simply  described  in terms 
of the following probability  measures  defined on metric  spaces: 

(a) The space of possible states of nature fJ = ( p, 'Y) where p, 'Y are indexes of 

alternative classes (hypotheses); 

(b) The space of possible statistical decisions O = ( jj , y ), the decision that the 
examined  image is caused by a primary proton  or a   y-quantum; 
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(c) Cost (losses) measure C06 defined on the direct product of the true states and 
decision spaces (8 x 8). At correct classification the losses are equal to zero: 

CPfi = CY'i = 0. If we misclassify the signal event (error of the first kind), we 

decrease the efficiency of the -y-event registration. If we attribute hadronic 

images to -y-ray ones (error of the second kind), we increase the background 

contamination. As we expect a significant excess of background against signal, 

we are interested in a strong background rejection. It is therefore not reason­ 

able to take the symmetric loss function CP'i = Cf>'>' = 0.5, as we did  in our 

earlier studies concerning the cosmic-ray hadrons classification by a transition 
radiation detector and iron nuclei fraction determination  in  the  primary flux 

[13]. 

(d) Event (measurement, feature) space - a set of possible results of a random 

experiment - image parameter samples obtained by a Monte Carlo simulation. 

We shall denote these samples by wp and w'>' . The experimental image 

handling procedure parameters are determined by these samples. 

(e) The prior measure P0 = (Py, PP ). For this measure we used the uniform 
distribution  P'>' =PP = 0.5. In this case classification  results will depend only on 

the available experimental information  and the   losses. 

(f) Conditional density (likelihood  function):  { p(  x/ wp),  p(  x/ w)}. The estimation 

of the conditional (on particle type) density on the basis of a collection of 

simulations (the Bayesian learning) is a typical problem in cosmic ray and high 

energy physics. The application of nonparametric local  density  estimation 

methods (the kernel-type Parzen estimates [14], the K-nearest-neighbors (KNN) 

estimates [15]) gives the best results. Our development of these nonparametric 

density estimates [16] makes their use in cosmic ray physics considerably more 

simple and increases their precision. 

(g) The  a posteriori   density  p( w0/ x ) -p 0p( x/ w0),  in  which  the prior  and  experi­ 

mental  information  is  included.  As  we  choose  prior  information   to  have  a 

uniform distribution, the a posteriori density coincides  with  the conditional 

one. 

Proceeding from the above definitions we can introduce the Bayesian decision 

rule: 

                                                            (3) 

 
3. Leaming in the feed-forward neural networks 

 

The basic computing element in a NN is a node (neuron). A general ith node 

receives signals from  some number  of input channels (see  Fig. 1): 

NODES(/) 

IN/ + ' = 8;+ L, J{ OUTj, i = l, NODES(L + l),   l = l , L , (4) 
j = 1 



. 

•  •  • 

 
 
 
 
 

 

502 A. Chilingarian / Neurocomputing 6 (1994) 497-512 

 

 

wi 

 
 

 
 
 
 

• • 
•.• . 

 
+ 

+ 

+ 

+ 

+ 

net 
+
 
+ 

... 
 

3::3::1 
+ 

+ + + 

• •  • 
•  • • 
•  • • 

.• .•  .. 
•  •  • • 
•  •  • •  •  • • • 
•  • • •  •  • •  • 
• • • • • • • • • + 

• •  • •  • • • •  • •  •   • + 

+ + + 

+ + + 

+ + + 

+ + + 

+ + + + 

+ +   +  +   + + 

+ + +   +   +   +  + 

+   + +   + +   + + 

+ + + + + + + 

+ + + +  + + + +  • 

+  + • +  + + +  +  + + 

•  •  •  •   •  •  •  •  •  X   •  X  +  +  +  X   X  +  +  X  +  +  +  +  +       + 

0.0 .26 .50 

• • gamma stlowers X - mlssclassltlcatlons 

.76 1.0 

 

+ - proton showers  
Fig. 1. Neural classifier. 

 

where the threshold <9; and connection strength l; are parameters associated with 

the node i , L is the layer index, L the total  number  of  layers,  NODES([)  the 

neuron number in the /th layer, and OUTj  the  output  of  the  jth  neuron  in  /th 
layer. The index j always corresponds to the higher layer (the highest layer is the 

input layer), and the index i to the next layer.  The  output  of  the  neuron  is 

assumed to be a simple function of this node input; usually it is formed by the 
nonlinear  sigmoid function: 

OUT/ = 1/(l + exp( -INf ),  i = l, NODES(l), l afo l, (5) 

where  INf  is the input of  the  ith neuron  in  the  /th  layer. 
The topology of the NN for event classification purposes usually has a fairly 

restrictive  form [17]: 
(1) All nodes are arranged into distinct layers. 
(2) The input layer has one node for each measured characteristic. 
(3) Th output layer has a single node, by which output the classification function 

is formed. 
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(4) The feed-forward connectivity: a node in a given layer receives input only from 
nodes in the preceding layer. 

(5) Complete connectivity: each node in a given layer sends its output to all nodes 
in the next layer. 

The trivial case of such an architecture is the linear discriminant function,  in 
which the input nodes are directly connected to the output one. By implementing 

this topology one can obtain the best linear discriminant, proceeding from the 
selected  input variables. 

To obtain a more complicated nonlinear discriminant surface, the transition 
from input to output proceeds through so-called hidden layers, in which various 
internal representations of the input are constructed, leading to more complicated 
decision boundaries. 

With an input/ output relationship  thus  defined  the  multidimensional  feature 
set is translated from input through hidden layers to the output node, where 
classification is performed. So, the NN provides one-to-one mapping of a compli­ 
cated  input signal to class  assignments. 

Such a data handling design, combining the linear summation on  the  nodes 
input, and nonlinear transformation in the nodes, allows us to take into account all 
distinctive information, including differences in nonlinear correlations of alterna­ 

tive classes of multidimensional  features. 

This method is easily generalized to classification with a number of classes (for 

example, for classification of incident cosmic radiation into 5  distinct  nuclei 
groups). The M-node output layer can be used to separate the input stream into 

2M classes, if binary representation of  the class number  is used. The analog signal 

of the single output node can also be used to classify the events into several 
categ"ries. 

The 'true' output - OUT1 ue[k ] for k th category events is determined to 
maximize the shift of the alternative classes from each other: 

OUT1  e[k ) = ( k - 1)/(K - l),  k = l , K , (6) 

where K is the total number of classes.  In  the  case of  two classes, e.g. the  first 
class being y-images and the second being p-images (background),  the  'true' 
outputs, as one can easily see, are equal to zero and one. The actual events 
classification is performed by comparing the obtained output value with the 'true' 
one. 

Thus the network contains a number of free parameters: the thresholds and 
connection  strengths, the total  number  of  which  is equal to: 

 
L L-1 

NTOT = L NODES(l) + L NODES(l)NODES(l + 1). 
1=2 1=1 

 
(7) 

For simple net configurations,  e.g. 1::3::1, NTOT  is 10, while for a 3::3::1NTOT   is 
18. 

The  net  training  consists  in  determining  these  parameters  using  of  'labeled' 
events  (training  samples). The  figure  of  merit  to  be  minimized   is  simply  the 
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discrepancy of apparent and target outputs over all training samples (classification 

score function): 

K Mk 

Q = L Lw( k )(OUT  [k] - OUTtrue[k ]( 
k = l m = l 

(8) 

where OUT is the actual output value  of  training  event,  belonging  to  the  k th 

class, and the OUTtrue [k] is the target value of  the  k th class output, where  K  is 

the number of categories and Mk is the number of  events in the  Kth  training set, 
and w(k) is the weight function, controlling the relative 'quality' of each class 

training. If we want to suppress the background contamination significantly, the 

background  cluster must be compact and be as near as possible to the OUTtrue   [2], 

i.e. to 1. So the value of w(2) must be somewhat greater than w(l), if the signal 

cluster may be much more spread near to the O point as 50% registration efficiency 

is good enough. 
For  feed-forward  network  training,  a  standard  technique  exists,  providing the 

approximate minimization of a classification  score function: the changes, initiated 

by the difference between the expected and predicted output pattern, have 

propagated  back  through  the network. 
The small correction to the network parameters (each correction associated   a 

with particular event) are done by the steepest descent  steps: 

Jij(new)  = ](old) +Llm]ij• LJ.m ji j = -eaQ/ aJij> (9) 

where e is the step size, the distance to move along the gradient, also called the 

'learning  coefficient'. 
The  couplings  between  the  last  hidden  and  output  units  are  modified   (after 

proceeding  throughout  the net  of  an  event) according to 

Llml0 = e(OUT,;; - OUTtruc)OUT/ -
1
0UT,(1 - OUT, ). 

j = 1, NODES{L - 1), (NODES{L) = 1) , (10) 

where OUT,;; is the actual response of the single output node for the mth event, 

OUTiL-l is the output of the jth node of the last hidden layer and OUT1rue  is the 

target  output  of  the  mth event. 

The couplings, connected the the hidden layers (or hidden and input layers) are 

obtained  by  the formula: 

Llml;7 - 1 = El;f (new)(OUT,;; - OUTtrue)OUT/-20UT/ -
1(l -OUT/- 

1
). 

{11) 

Thus the error terms, obtained on the output, are evaluated back through the 

hidden layers to the input layer (hence the name backpropagation). 
It is worth  remembering  that  a steepest  descent  procedure  cannot  escape from 

the local minimum region of the quality function once it enters it, and the 

minimization  is not guaranteed  to converge  to an absolute  minimum. 

Another strategy introduced recently [18,19], provides the possibility of escaping 
from the local minimum region and is obviously more biologically realistic.It   trains 
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the net in an evolutionary way, implementing the procedure of trial and error for 

modification  of  the values of net parameters. 

First, the particular net parameter is randomly chosen (including node thresh­ 

olds as well as couplings), then the random addition (or subtraction) L1 is selected: 

L1 = 77f ( Q)(RNDM -0.5), (12) 

where RNDM is randomly distributed in the (0-1) interval, f( Q) is the power 

function controlling the rate of descent when approaching the minimum and 77 is a 

random  'step' size. 

If the random step is successful, i.e. the score function decreases, then the 

modification survives, otherwise it is subtracted and the random search procedure 

continues. 

The iterations stop when the value of the quality function is stabilized, and no 

more improvements take place, thus indicating that the theoretical limit of possible 

classification error reduction has been reached. The resulting set of net parame­ 

ters can be used for experimental data classification. We expect that data flow 

passing through the trained net will be divided in two clusters concentrated in the 

opposite regions of the (0-1) interval. Choosing an arbitrary point in this interval 

(the so-called decision point C*) the classification procedure can be  defined: an 

event whose output is greater that the decision point is attributed to the second 

class, while  all other  events belong  to the first class: 

 

OUT L(x) C*   . x E {, (13) 

 

where OUT L(x) is the output node response for a particular experimental image x. 

The overlap of clusters caused by the classification errors depends on the 

discrintinative power of the feature subset  and on the learning power.  By moving 

the decision point along the (0-1) interval we can change the relation between first 

and second kind of errors (the position of the decision point is the neural analog of 

the cost (losses) function  in the Bayesian   approach). 

 

 
4. Statistical and neural methods of Cherenkov images classification 

 
For a comparative study of  statistical  and  neural  classification  we  used 7000 

events from an observation of the Crab nebula  at  the  Whipple  observatory  [20] 

(only OFF i.f. background data were used). The training was performed with a 

combined TS - simulated -y  - images&experimental  hadron  images (507 -y  & 517 

p events). Three  features  were  used:  LENGTH,  WIDTH  arid  AZIMUTHAL 

WIDTH,  the  best  combination  obtained  from  multidimensional  correlation   analy­ 

sis  [21]. 

The  Bayesian  procedure  parameters  were:  the  Parsen  width  value   -0.35  for 

each  dimension,  the cost  value  Cirt  (CP-r  is equal  to  1 - CP.) varies  from  0.01 to 

0.1. Leave-one-out-for-a-time procedures were used to estimate classification er­ 

rors. 
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Fig. 2. The NN output after 1000 (148 success steps) trials of random search learning; tough -y-cluster; 

classification  score improoved  from 0.5 till 0.24; each sign (•,  +) corresponds  to  10  events. 
 

 

 

The neural classification was performed with a simple three-layered net with 3 

hidden and one output nodes. Fig. 1 shows the Cherenkov image parameters, their 
input to the net and the output histograms. The decision point was varied in the 

same interval as the cost function in the Bayesian method. Two variants of weight 

values were used: 0.45 & 0.55 tight background cluster and 0.55 & 0.45 tight y-
cluster. 

As one can see from the normalized histograms ( Figs. 2 and  3) of  net output 

after 1000 learning iterations, when couplings were modified according to (12), the 
alternative classes were all well-separated. The differences of the figures prove the 

ability of controlling the learning 'quality' of  each  class via  altering  the weights 

ratio (see Eq. 8). The output distribution of a well-trained class has mean values 
close to the target ones and relatively smaJI spread (mean square deviation). As has 

been mentioned above, we are interested in significant suppression of background p-

images. Therefore for data classification we use the net with couplings obtained 
in  the  learning cycle, corresponding  to a 0.45/0.55 weights ratio ( Fig.  3). 

The process of successive improvement of the classification score during the 

random search is shown in Figs 4 and 5. The curves correspond to the histograms 

on Figs.  2 and 3. 

From the learning results we can calculate classification errors for both the 

statistical  and  neural   technique.  These  training  sample  errors  (apparent   errors) 
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Fig. 3. The NN output after 1000 (189 success steps) trials of random search learning; tough p-cluster; 

classification  score improved  from 0.5 till 0.23; each  sign (•,  +) corresponds to 10 events. 
 

 

 

usually are optimistically biased and the crucial test is, of  course,  the  control 

sample test. For the control we used independent (not present in  the  TS) 

background  observations (7000) events. 
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Fig. 4. Random search of net couplings, minimization of classification score. 
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Fig. 5. Random search of net couplings, minimization  of classification score. 

 

 

 
 

As one can see from Table 1,the apparent  and control errors are consistent  and 

the statistical and neural classifications coincide very well. The lack of bias in 

statistical error rates is explained by use of the leave-one-out method, specially 

designed  to avoid bias effects [22]. 
By  changing  the  cost  function  in  (3)  and  the  decision  point  in (13)  one  can 

obtain different ratios between errors of the first and second kind (registration 
efficiency and background contamination). In this way, we obtain so-called 'in­ 

fluence curves' which give us the possibility of choosing the desired errors ratio in 
classification (remember,  that you  can't decrease  both  errors simultaneously). 

The influence curves in Fig. 6 prove again the excellent coincidence of both 

techniques used, that manifest the agreement of the errors to  the  theoretical 

Bayesian error limit and proper construction and learning  of nonparametric 

statistical  and  neural procedures. 
NN training takes  "" 20 min. on an IBM PC/AT-386. The time spent for each 
experimental event classification is 0.001 sec. Bayesian training (multivariate 

density  nonparametric  estimation)  is  repeated  for  each  experimental  event again 
 

 

 
Table 1 
The apparent  and  control  errors obtained  by statistical  and  neural classifiers 

 
 

Apparent (TS) Control error 

error 

Bayesian  classification 

r-image registration efficiency 

background contamination 

 
0.52 

0.006 0.0058 

cv = 0.015   

Neural classification 

r-image registration efficiency 

back.ground contamination 

C* = 0.05 

0.44 

0.004 0.0062 
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and again, so an event classification takes z 2 sec. on the same computer with 
same the training set and feature space. 

 

 
5. The analysis of the Crab Nebula data 

 
Searches  for  discrete  y-ray  sources  consisted  in  detection  of  an  abundance 

(N00  - N0ff) of  events  coming  from  the  direction  of  a  possible  source  comparing 
with  a control measurement,  when  pure background  is registered. As the expected 
fluxes  are very  weak  (the  signal  to  background  ratio  does  not  exceed  0.01), one 
question always has to be answered: is the detected abundance a real signal or only 
background  fluctuation?  The  measure  (level)  of  statistical  significance,  used  in 

y-ray astronomy, is the so-called criterion size (sigma) [23): 

<T  = (Non -Noff )/( Non + Norr) - (14) 

The greater the <T  value, the lesser the probability,  that  detected  excess  is due 

to background fluctuation , and the equipment construction and new data handling 

methods development have an aim to enlarge the <T value.  After  selecting the 'y-

like' events from row data (both from the ON and OFF samples), according to some 

discriminating  technique,  the criterion  takes form: 
 

 

where Nn  N ff  are the 'survived' events number. 

(15) 

0 0 

The best  discrimination  technique,  used  in Whipple  Observatory is the multidi­ 
mensional  cuts ('supercuts') method,  proposed  in  [24] and  then  improved  in [25) 
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(4 Cherenkov image parameters were used). This method consists in a posterior 

selection of the best y-cluster, the multidimensional hypercube, containing 'y-like' 

events. The particular coordinates of the cube were selected to maximize the u 

value  on  the  1988-1989  Crab  Nebula  observation  database (65 ON, OFF pairs 

- 1 min. events) (26]. Implementing the supercuts method the initial u value was 

enlarged from 5 to 34. 

However, it is doubtful, that the rectangular shape is the best one, and 

furthermore Cawley finds significant differences between ON and OFF distribu­ 

tions within the hypercube. We use a simple 4::5::1 neural net to select the better 

nonlinear shape of the y-cluster. A preprocessing was done: events falling in the 

enlarged hypercube (1.5 times larger than the best ones) were selected. The net 

was trained on these ON/OFF events. The new quality function was used, instead 

of classification score (8): the sigma value (15) was maximized. 

After  several hours  of  random  search the better  y-cluster  was outlined and the 

u value was enlarged from 27 to 36 (the record value). 

The use of new quality function  allows one  to: 

• avoid usage of Monte Carlo events with inherent misleading simplifications and 

incorrectness; 

• direct optimize the desired quantity: the significance of source detection; 

• obtain the complicated nonlinear boundaries of y-cluster. 

This modification of the neural classification method  seems to be very promis­ 

ing for the future proton colliders (LHC and SSC) data analysis, intended to detect 

very rare, as yet unseen physical phenomena (27]. The effects of model depen­ 

dence of the training are the main obstacles of using standard training with the 

classification score as quality function. The direct comparison of pure background 

and an mixture, containing  a very small  percentage  of interesting events, can lead 

to the discovery of new physical  processes  and particles. 

 

 
6. Conclusions 

 

The NN classifier forms a special type of statistical classifier and  is consistent 

with  other nonparametric classifiers developed within  the Bayesian   approach. 

After  a few hundred  successful  random  adjustments  of  the net  parameters, the 

net is trained to suppress the background contamination down to a desired level, 

consistent  with  other sophisticated  and  time-consuming  nonparametric methods. 

The great advantage of NN classifiers consists in separation of the learning and 

the active phase. After the learning phase, all distinctive information contained in 

the training samples is mapped on the net parameter set. This parameter set can 

be written to a VLSI neurochip with the aid of a special trainer box (28]. Trained 

neurochips may be 4 to 5 orders of magnitude faster than software statistical 

classifiers. Thus we can recommend the NN classifier as a very fast intelligent 

trigger for on-line analys in collider and cosmic ray physic experiments and as a 

sophisticated but also very fast tool for complicated off-line analysis. 

The most  challenging  problem  of  modern  cosmic ray  physics  seems  to be the 
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identification of high energy neutrino point sources. A recently proposed approach 
[30] for constructing an above-ground neutrino detector (registering the upward 
going muons produced by charged interaction of parent neutrino in the rock below 

the detector), requires a very high rejection power (up to 1011
) to reduce the 

background due to upward going muons which are produced by cosmic ray 
interaction in the atmosphere. The proposed  classification  technique  can  be used 
to enlarge the sensitivity of  the detector to very weak  neutrino   fluxes. 
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