Fermi GBM Observations of TGFs & Fermi GBM TGF Catalogs

Michael S. Briggs on behalf of the Fermi GBM TGF Team

Max-Planck-Institut für extraterrestrische Physik

University College Dublin

2015 Oct 6

GBM BGO Detector

What is a TGF?

20% of triggered TGFs have multiple, separated pulses. Most are doubles, some triples:

Foley, et al. (2014)

TEPA 2015

P = 2.3E-14

TEPA 2015

The shortest TGFs have higher deadtime. There likely remains a bias against detecting very short TGFs.

Fermi Locations at the times of 2700 GBM TGFs

Lightning Activity, as observed with the Lightning Imaging Sensor (LIS)

Two theories for electron-acceleration for TGFs. The gamma-rays are from bremsstrahlung.

From Sebastien Celestin

2015 Oct 6

TEPA 2015

Runaway Electron Avalanches by Relativistic Feedback J. Dwyer

E = 750 kV / mfor 150 m, $\rightarrow 110 \text{ MV potential}$

Initial avalanche from a single 1 MeV seed electron.

Additional avalanches produced by x-ray and positron feedback.

(m)

Black = Electron Blue = Positron

Finding GBM TGFs

150 ms of BGO data

Lightning, Radio and Storms

World-Wide Lightning Location Network (WWLLN) Very Low Frequency (VLF) Radio

Correlating TGFs in gamma-rays (GBM) with lightning via radio (WWLLN)

Connaughton et al. (2010)

TEPA 2015

WWLLN Maps for ±10 minutes

35.

30.

25.

20.

٥

250.

Latitude

21

Radio / γ -ray offset: 58 μ s Chance P < 0.4%

Technique of Connaughton et al., 2010 Radio / γ -ray offset: 9 μ s Chance P < 0.9%

255.

260.

East Longitude

265.

2015 Oct 6

ed as the

VLF localizations, ~10 km uncertainty Regional maps from sample of 1341.

The probability of detecting radio emission from a TGF is anticorrelated with TGF duration \rightarrow most TGF-associated radio emission is directly from TGFs, rather than associated lightning radiation.

Connaughton et al. (2012)

salmon: All 594 TGFs blue: TGFs with simultaneous WWLLN sferics asterics: fraction with simultaneous WWLLN-measured radiated energy: simultaneous sferics (pink) and nonsimultaneous (teal)

Connaughton et al. (2012)

TGF-producing storms: Observing TGF locations (red) with NEXRAD Doppler Weather radars (blue)

NEXRAD radar: Enhanced Echo Tops (EET) and radar reflectivity (dBZ)

TEPA 2015

Terrestrial Electron Bursts (TEBs)

Meteosat 9 image

2015 Oct 6

Magenta: simulation by J. Dwyer

TEPA 2015

TEB Identification

Multiple criteria:

511 keV line,

Lightning activity at possible source locations, Mirror pulse,

Time history as predicted for TEB, Asymmetry of detector signals.

GBM TGF Catalogs

First GBM TGF Catalog

The first GBM TGF catalog was released in January: http://gammaray.nsstc.nasa.gov/gbm/science/ description.html

It has data for 2704 TGFs through 2014 July 31, including 476 triggered TGFs. High quality: cosmic rays removed by checking Fermi LAT calorimeter data.

Data included: time, spacecraft location, count intensity, duration, ...

Note: all GBM γ-ray data is available from the Fermi Science Support Center (FSSC).

Second GBM TGF Catalog

The second GBM TGF catalog will be released by January. Besides updating the existing tables to \approx 3450 TGFs through 2015 June 24, it will add additional data and software:

Terrestrial Electron Burst (TEB) Table (~30), Table of VLF associations / localizations (≈1300) ! VLF maps of lightning activity, Software for using GBM Time-Tagged Event (TTE) data.