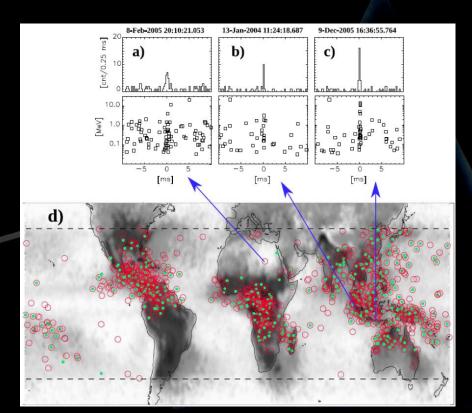
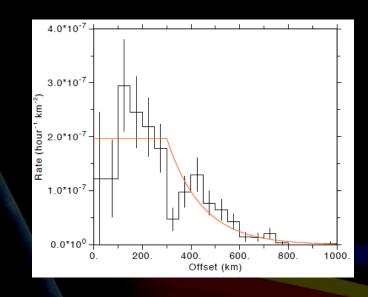

Cluster experiment for TGF investigation

A. Pozanenko¹, N. Vedenkin², P. Kudryashov², <u>P. Minaev¹</u>, A. Chernenko¹, V. Vybornov¹

¹ – Space Research Institute (IKI), Russia
² – Dauria Aerospace, Technopark Skolkovo, Russia

Problems of TGF science

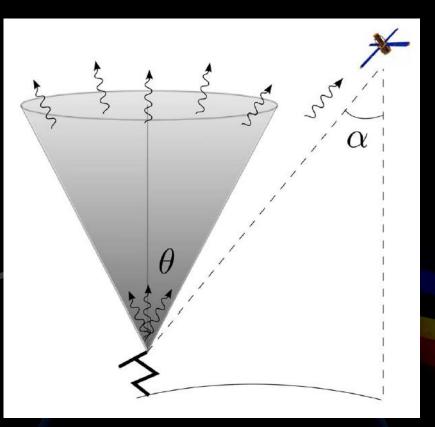

- Maximal fluence and true fluence distribution are unknown
- Distortion of spectrum and underestimating fluence of TGF due to dead time and pile-up effects



Grefenstette+ 2009

Problems of TGF science

- Two-thirds of events are not identified with lightning
- Localization in gamma-ray domain is impossible
- Till now only one TGF was observed in both gamma- and visible light (Ostgaard+ 2013)



Briggs+ 2012

Gjesteland+ 2012

Problems of TGF science

• Cone angle of gamma-emission is unknown (~ 40 deg or greater, Gjesteland+ 2011)

Gjesteland+ 2011

The idea of Cluster experiment

 Several identical micro satellites on the same low orbit with distance ~ 50 km between them:

•Can improve statistics without increasing of dead time effects

•Can provide localization in gamma-rays using triangulation method in case of registration of the same TGF by two or more satellites

•Can provide estimation of gamma-radiation beam angle and its structure

•Can provide full coverage of thunderstorm areas for multiple TGF registration

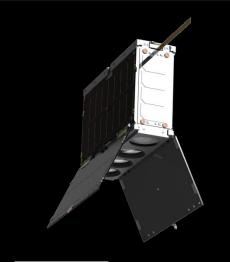
Cluster experiment

•Objectives:

•TGFs: registration, localization, estimation of radiation beam angle, registration of several TGFs from one thunderstorm area

•Registration of GRBs and Solar flares

- •Orbit ~350 km (LEO) with inclination of 51 deg
- •4 identical satellites
- •Distance between satellites ~ 50 km
- •GPS controlled and synchronized with accuracy of time acquisition better ~ 1µs
- •Lifetime ~ 1-3 yr
- •Expected launch date of the first 4 satellites 2017
- •Expected launch date of the next 4 satellites 2019, 2020, ...
- •Current status of the project under investigation of international collaboration


•Detectors:

- •BGO crystal with diameter of 3 inches
- •Energy range 0.1-10 MeV
- Photon-by-photon registration
- Time accuracy of photon registration ~ 1µs
- •Triangulation:
- Time delay ~ 0.2 ms for 350 km orbit and distance between satellites of 200 km
- •Time accuracy of TGF profiles alignment is ~ 10 μ s for bright events
- •Time accuracy synchronization with UT ~ $1\mu s$

Sensitivity to TGFs is like GBM/Fermi one (smaller detectors but lower orbit)

Dauria space platform

Parameter	
Possible payload	Earth Observation, Disaster monitoring, AIS, Science, M2M, GPS/Glonass occultation
Total Mass	10-13 kg
Payload	5 kg
Orbit	LEO, SSO
Size	6U (240x370x115) 244x89x116 for payload
Lifetime	1-3 years
Maximum power output	30 W
Battery capacity	12.1 Ah
GPS /Glonass	GPS/Glonass
Accuracy of 3-axes stabilization	<10
Target information transmitter	Ka-band

Example: Framing Imager – 3 channel – 22m GSD

Ka-band Transmitter

Expected results

- •TGF registration rate ~ 300 / yr (Briggs+ 2013)
- •TGF registration with localization ~ 10 / yr
- •Ground localization is grazing belts of ~ 15 km width
- •Gamma Ray Burst registration rate ~ 50 / yr

Thank you for your attention!