Monte Carlo model of the transport in the atmosphere of relativistic electrons and gamma rays associated with TGFs

David Sarria Pierre-Louis Blelly, François Institut de Recherche en Astrophysique et Planétologie Toulouse, France TEPA 2014 09/23/2014

What are TGFs?

The TARANIS mission

Building and validating the Monte-Carlo model

Application of the model

What are TGFs?

What are TGFs?

→ What are TLEs?

TLEs and TGFs

TLE = Transient Luminous Event TGF = Terrestrial Gamma-Ray Flash

TGFs : observations

Discovered by BATSE (CGRO) in 1992, published in Fishman et al. 1994

Then, observed mostly by RHESSI, FERMI and AGILE

About 400 µs duration, and some multiple pulse events

Bremsstrahlung spectrum ~ $1/E * exp(-E/\epsilon)$, ϵ ~7.3 MeV (red curve only!)

~ 1 photon/cm² at satellite altitude

~ 400 TGF/day

Maximum energies ~ 40 MeV, up to 100 MeV ? (AGILE)

Production altitude ~10-15 km, zenith half-angle emission >30°

TGFs : observations

Strong correlation between TGF and thunderstorm activity

Secondary electron Beams

- Primary electrons : no chance of escaping the atmosphere
- Photons produce secondary electrons at higher altitude (> 30 km) that can reach satellite altitude.
- This population of electrons will be confined by the magnetic field of the Earth,
 - Terrestrial Electrons Beams (TEBs)

Responsible for « TGF » detections above deserts

The TARANIS mission

Taranis : general information

Tool for the Analysis of RAdiation from lightNIng and Sprites

CNES - Septembre 2007 /Illus D. Ducro

 Physical understanding of the links between TLEs, TGFs and environmental conditions

• Identify the signatures associated with these phenomena and to provide inputs to test generation mechanisms.

• To provide inputs for the modelling of the effects of TLEs, TGFs and bursts of precipitated and accelerated electrons on the Earth's atmosphere.

Taranis : instruments

When a priority event is detected (TLE, TGF, electron beam, burst of electromagnetic waves), then all instruments record and transmit to ground high resolution data.

Taranis : motivations for this work

Different TGF production models are available (Relativistic feedback and Cold Runaway)

- Constraints of the TGF source mechanisms and properties?
 - Multiple pulsed TGFs?
- Ability to detect electron and photons: XGRE and IDEE
- What is the link between TLEs and TGFs?
- Do TGFs produce visible light?

Taranis will provide a lot of information to answer to all these questions

To prepare for TARANIS, focusing on XGRE and IDEE, simulating the physics of the propagation of high energy photons and electrons, in the earth environment, from the TGF source (~ 10-15 km) to the satellite (500-700 km) is necessary

Monte-Carlo model

Involved interactions : photons

Photon interactions probabilities

Involved interactions : electrons and positrons

Electron/positron interactions probabilities

GEANT4 Comparison

Monte-Carlo code developed by an international collaboration lead by CERN.

Used to validate our model

GEANT4 Comparison

- Source of photons with 1/E spectrum at 15 km altitude
- Detection set to 100 km altitude

+ Radial distance distribution with ~perfect agreement

Application of the model

Simulation parameters

Source :

- Altitude = 15 km, southern hemisphere, equatorial region
- Point source, gaussian distributed opening angle σ =35°
- Initial energies : Bremsstrahlung, E=[10 keV, 30 MeV]
- 10⁷ initial photons (real TGF is ~10¹⁶ photons)

Fermi event 091214 ?

Particules detected: Energy spectra

Particules detected: production processes

Production altitudes

Production altitudes

Particules detected at 550 km : electron/positron beam

Monte-Carlo model for photon/electron/positron transport in Earth atmosphere, and magnetic field, taking into account 11 processes.

Photons detected:

• primary source ~79 %, annihilation ~7%, bremsstrahlung ~14% Electrons detected:

compton ~70 %, inelastic scattering ~20 %, pair production ~10 %

Production altitudes of electrons :

- 30-70 km : dominated by compton scattering
- 70-100 km : dominated by inelastic scattering

 \rightarrow Electron beams r~20 km, ~2 times higher than Dwyer et al. But source altitude lower and opening angle of the source probably wider.

Bouncing ratio ~10 % for electrons, ~7 % for positrons. Is it highly dependent on some properties of the source?

What about time distributions? Positron/Electron ratio?

THANK YOU FOR YOUR ATTENTION

Questions are very welcome

Production theory

Main theories at present :

Relativistic feedback from cosmic ray seed particles

- Strong large scale electric potentials (> 100 MV over >100 m) :
- RREA + Feedback mechanism is enough to account for observed TGFs
- Timescale ~ 10-100 µs

Lightning current pulse (LCP)

- Very strong small scale potential that can make run-away thermal electrons
- Feedback negligible
- Negative leaders required
 Lightning must be associated to TGF
 - Broad TGF beams

Narrow TGF beams

Timescale ~ 400 μs

Relativistic feedback in non-uniform fields

- Positive leaders more likely
- TGF can be produce without lightning (« dark lightning »)

Particules detected at 550 km : electron/positron beam profiles

Electrons Positrons

Random sampling interactions

- How to choose an interaction ?

Cross-sections are used as point probabilities :

$$P_{i_{proc}} = \frac{\sigma_{i_{proc}}}{\sum_{i=1}^{i=N_{proc}^{i_{type}}} \sigma_i}$$

Cross section sets used

Processes	Total Cross-section source
Compton Scattering	EPDL^1
Photo-electric Absorption	
Rayleigh Scattering	
e-/e+ Pair Production	
Inelastic scattering	$EEDL^4$
Bremsstrahlung	$ m Seltzer-Berger^3$
Elastic Scattering	EEDL^4
Inelastic scattering	$EEDL^4$
Positron Bremsstrahlung Elastic Scattering	Seltzer-Berger ³ with an analytical correction ²
	$ELSEPA^2$ and $EEDL^4$
Annihilation	Analytical formula ²
	Processes Compton Scattering Photo-electric Absorption Rayleigh Scattering e-/e+ Pair Production Inelastic scattering Bremsstrahlung Elastic Scattering Bremsstrahlung Elastic Scattering Annihilation

1 : Ref. Cullen et al. [1997]

2 : Ref. Salvat et al. [2011]

3: Ref. Seltzer and Berger [1986]

4 : Ref. Perkins et al. [1991]

Random sampling the path-lengths

Between two interactions, the particle follows straight lines. Applying the inverse transform method to U(s) gives :

$$s = \frac{-1}{a \cos(\alpha)} ln \left(1 + \frac{ln(\xi) a \cos(\alpha)}{\mu_{att,i_{par}} \rho(h_1)} \right)$$

- α is the angle between particle direction and local vertical.
- ξ is a random number between 0 and 1
- ρ is the density of the atmosphère
- $\mu_{_{att}}\,$ is calculated from cross-sections and specie densities
- h₁ is the altitude of the particle before moving

Used for photons at any altitude

For h_1 =15 km and E=10 keV :

s ~ 2 km for photons s ~ 2 cm for electrons

Used (with different μ_{att}) for electrons/positrons if the collision frequency dominates the gyration frequency
If the gyration frequency dominates, electrons/positrons are propagated solving the relativistic Lorentz equation with a 4th order Puppe kutta

Random sampling interactions

Different for each interaction, but always the same general method :

A differential cross section in *energy* or *angle* can be computed analytically or from tabulated values. For example, for Compton scattering : $\frac{\mathrm{d}\sigma_{\mathrm{Co}}}{\mathrm{d}E'} = \frac{\pi r_{\mathrm{e}}^2}{E} \kappa^{-3} \left(\frac{E^2}{E'^2} + \frac{(\kappa^2 - 2\kappa - 2)E}{E'} + (2\kappa + 1) + \frac{\kappa^2 E'}{E} \right) S_{\mathrm{WH}}(q_{\mathrm{C}})$ Normalizing it to unity gives a probability density function : <u>x</u> 10⁻³ 15 ^{>hoton} energy before int 10 keV 100 keV Then, the remaining Probability 10 1 MeV unknowns are 10 MeV deduced using 50 MeV conservation of 5 momentum and energy. 0.2 0.4 0.6 0.8 Photon energy ratio after/before interaction (E'/E)

Conclusions

TLEs, TGFs and TEBs are fascinating, recently discovered phenomena.

Observations lead to **some important constraints** :

- Correlated to thunderstorms
 Bremsstrahlung spectrum
- Altitude of production 10-20 km
 Max energies 40 MeV (100 MeV ??)
- 1 photon/cm² at satellite Induced Electron beams
- ~400 µs duration
 Fairly Common phenomena (~400 TGF/day)

A good theoretical work as been done, and two theories are still defended : Cold Runaway and Relativistic feedback

TARANIS is designed to detect TGFs, TLEs and TEBs, with simultaneous high resolution measurements of X/gamma rays, electrons, radio waves and optical emissions (TARANIS launch is expected in the end of 2016).

In preparation of TARANIS data analysis, we build a complete Monte Carlo model of the transport of photons, electrons and positrons in the atmosphere :

- 3D, including atmosphere (MSIS) and magnetic field model (IGRF-11)
- Follows photons, electron and positrons and includes $N_{proc} = 11$ in total.
- It is in very good agreement with Geant4.

Production theory

During a lightning event

Electric field induced acceleration VS

Air friction

Relativistic feedback and cold runaway are possible mechanisms

Production theory

Random sampling

s = path-length = distance between two interactions.

P(s) = probability of not interaction after reaching a distance s

$$P(s) = 1 - exp\left[-\int_0^s \frac{ds'}{\lambda(s')}\right]$$

 $\lambda = \ll$ local mean free path »

$$\lambda^{-1} = \sigma\left(E, Z\right) \rho\left(h\left(s'\right)\right)$$

Important assumption : $ho\left(h
ight)=
ho_{0}e^{-rac{h}{H}}$

H ~ 7 km

GEANT4 Comparison

Monte-Carlo code developed by an international collaboration lead by CERN.

Used to validate our model

G4 Primarily designed to simulate detectors : can only handle constant density layers

Atmosphere = 500 exponentially spaced layers \in [0 100] km

Different physics lists are used.

→ Most relevant : LHEP and LBE, no change in practice

(for this problem)

Particules detected: Energy spectra

