

Some phenomena in studies of transient luminous events measured by TATIANA2 satellite.

G. K. Garipov

Skobel'syn Institute of Nuclear Physics, Moscow State University, Vorob'evy gory 1, str. 2, Moscow, 119992 Russia

On behalf of the TATIANA-2 science team

1.TATIANA2 microsatellite scientific instrument -principal investigator SINP MSU Science team leader - Mikhail Panasyuk.

Co-executers BUAP university, Mexico EWHA university, Republic of Korea

Speaker contribution to the science teams is design and manufacturing of detectors, development of research methods, on-line data processing and analysis

TATIANA-2 at the time of integration

Carrier rocket: "Souz-2" Upper-stage rocket "Frigate"

Operating orbit: Polar Sun synchronous Altitude : 800 – 850km Inclination 98.8⁰ Mass: 100kg Power: 100W

TATIANA-2 one orbit ground track on November 16 2009 which is discussed in this report

Block-diagram of the UV, IR & CP detector

UV and IR detector comprises 2 PMT tubes and electronics block.

(first two tubes measure an optical radiation, third measures the charge particle background)

Two code are recorded and used in measurements:

M- PMT gain DAC code and N- the PMT anode current ADC code

(1) collimator, (2) UV-1 filter, (3) IR filter, MX—multiplexor, HV—voltage supply for PM tubes, ADC and DAC—analog-digital and digital-analog convertors, Logic Unit-FPGA.
(4)Scintillate plastic.

UV	240-400nm
IR	610-800nm
Sensitive area	~ 0.5cm ²
Field of view ~	15 ⁰
Mass ~	0.65kG
Power <	2.5Wt

Example of one of the optical transient waveform registered by detector

IR Earth night glow and light produced by charged particles in SAA region recorded by TATIANA -2

Charged particles detector

Sensitive area - 350cm² Energy threshold for electrons -1MeV

An example of charged particle flux waveform registered by detector

Global charged particles distribution recorded by TATIANA-2

Detector structure

One day TLE signals altitudes distribution

Example of gain changing during one day

Examples of two temporal profile recoded TLE

G		I) - ((* • <mark>A</mark>) =					Книга	5 - Micro	osoft Exc	el					Работа с,	циаграм	імами										0 x	
	Гл	авная	Встав	ка	Разметка	а страниці	ы Фо	рмулы	Дан	ные	Реценз	ирование	В	ид Г	Разработ	чик	Констру	ктор	Макет	Фо	рмат							(0 - 🗖	X
Изм ди	енить т аграмм	тип Сох ы как Тип	фанить шаблон	Строк	иа/столбе Данн	ц Выбрат данные		∠ ∎ 	ты диа	Грамм	× ×		/		/		/	Стил	и диагра		~		/		/	*	Перем диагр Распол	естить амму ожение		
	Диагр	амма З	} 🔻	()	f _x																×									
	RJ	RK	RL	RM	RN	RO	RP	RQ	RR	RS	RT	RU	RV	RW	RX	RY	RZ	SA	SB	SC	SD	SE	SF	SG	SH	SI	SJ	SK	SL S	
1 0	.11.29.	04.12.29.	04.13.29. (04.14.29.	04.15.29.	04.16.29. 0	4.17.29. 04	.18.29. 04	.19.29.	04.20.29.	04.21.29.	04.22.29. 0	4.23.29.	04.24.29.	04.25.29.	04.26.29.	04.27.29. 0	4.28.29.	04.29.29. 0	04.30.29.	04.31.29. 0	4.32.29. 04	33.29. 04	4.34.29. 0	4.35.29. (04.36.29.	04.37.29.	04.38.29. (04.39.29. 04.4	i 📥
2 0	9.11.15.	09.11.15.	09.11.15. 0	09.11.15.	09.11.15.	09.11.15. 0	9.11.15. 09	9.11.15. 09	.11.15.	09.11.15.	09.11.15.	09.11.15. 0	9.11.15.	09.11.15.	09.11.15.	09.11.15.	09.11.15. 0	9.11.15.	09.11.15. 0	09.11.15.	09.11.15. 0	9.11.15. 09	.11.15. 09	9.11.15. 0	9.11.15. (09.11.15.	09.11.15.	09.11.15. 0	09.11.15. 09.1	1
3	73	72	72	211	220	210	232	234	225	229	234	240	245	236	219	241	241	234	242	247	245	244	216	212	225	235	233	228	212	
4	219	199	199	187	185	187	193	138	206	214	219	237	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	
6	4/6	4/9	400	401	402	400	404	405	400	407	400	409	130	204	492	495	494	495	490	49/	450	499	15	18	15	14	14	14	14	
7	19	19	19	14	18	14	35	15	70	107	111	401	130	996	14	14	14	18	18	15	14	15	15	15	15	14	15	15	14	
8	19	19	19	14	16	13	41	19	76	144	116	339	132	1013	14	14	15	17	17	15	12	18	16	17	16	13	14	16	15	
9	19	19	19	17	19	15	39	16	69	140	192	460	140	1005	15	14	17	17	19	17	11	16	14	17	15	15	14	17	15	
10	19	19	19	16	19	14	56	197	75	115	132	315	192	1004	31	15	16	18	18	14	13	16	15	18	15	15	30	17	15	
11	19	19	19	15	24	23	49	105	78	126	354	623	14	970	24	16	16	19	19	16	13	17	16	18	17	15	15	16	16	
12	19	19	19	13	3	114	94	76	144	117	634	1014	384	1001	28	18	14	20	20	17	13	15	14	17	16	15	15	17	15	
13	20	20	20	34	339	255	186	34	202	767	750	767	1023	1014	85	23	68	21	52	180	74	102	31	20	31	78	61	70	38	
14	19	19	19	14	701	311	382	3/0	619	900	662	581	633	994	21	21	24	290	200	40	17	15	14	1/	15	10	15	17	15	
16	19	19	19	24	109	22	58	41	508	370	710	432	265	933	50	17	14	15	15	16	16	17	16	17	18	15	15	17	14	
17	19	19	20	15	105	18	31	31	231	62	736	1023	452	896	29	22	15	16	18	16	14	18	15	18	17	14	14	14	14	
18	19	19	19	17	113	24	23	25	202	74	921	821	146	921	47	20	15	16	19	19	13	17	15	17	15	15	16	16	13	
19	19	19	19	16	36	23	17	19	175	43	816	1004	107	942	35	17	15	15	16	21	14	14	15	18	14	15	15	17	15	
20	19	19	19	15	484	18	13	18	148	26	713	274	96	947	33	18	15	13	16	22	15	18	15	18	16	13	13	17	15	
21	19	19	20	25	555	13	15	19	137	19	356	670	141	956	41	17	15	14	17	40	15	16	13	17	16	13	15	15	15	
22	18	19	19	19	275	11	13	19	122	23	1023	953	80	957	28	24	14	16	15	20	14	48	14	17	15	14	16	17	15	
23	19	19	10	10	400	10	12	18	100	20	976	490	/5 60	9/5	20	20	15	15	1/	20	32	10	14	10	16	14	15	10	14	
25	19	19	35	16	737	11	16	20	103	32	304	242	64	1013	31	20	15	22	17	17	14	15	15	18	16	14	14	17	14	
26	18	19	19	16	123	9	18	14	102	28	465	195	65	999	23	16	12	15	17	19	14	15	15	17	15	13	16	15	15	
27	18	18	19	15	191	15	12	14	93	28	153	573	68	999	22	18	15	15	17	17	12	16	14	17	15	14	15	16	16	
28	19	18	19	14	37	8	14	16	89	21	112	628	54	1018	56	20	14	16	16	18	17	16	15	17	16	15	14	17	15	
29	18	18	18	19	737	9	12	14	85	18	93	266	53	1005	43	42	14	16	17	17	15	16	15	17	16	14	16	17	16	
30	18	18	19	17	102	8	12	16	88	22	87	487	54	1007	31	19	14	17	17	20	13	16	15	18	15	13	14	15	13	
31	18	18	19	14	107	8	25	18	106	20	97	227	57	1005	36	16	14	15	17	19	13	48	14	17	18	17	15	16	14	-
33	18	18	19	10	102	9	10	17	93	19	104	189	49	1005	136	19	17	14	18	10	14	16	14	20	17	15	15	15	14	
34	18	18	18	14	75	9	20	17	85	19	109	200	44	1020	43	18	15	17	16	16	16	14	14	19	16	14	15	15	14	
35	18	18	19	15	81	8	13	17	77	37	148	211	46	1021	59	17	19	14	16	13	126	16	15	17	15	15	17	17	15	
36	18	18	19	12	120	9	8	19	97	37	132	147	45	1020	25	17	16	17	17	13	19	18	16	16	18	14	15	16	15	-
14 4	► H	Лист1	Лист2	Лис	π3 / 🕅													14											► ľ	
Гото	во 📍		A PRIME	1 - A - A																							70% 🧲)0	-	Ð
6)	0	Ē]	0	æ																		EN 😨	₽ ▼	- P	° 🛱 👍		18:04 05.02.2013	1

One day TLE distribution recorded by TATIANA-2 above clouds map 16 November 2009

INFRARED COMPOSITE FROM 16 NOV 09 AT 06:00 UTC (SSEC:UW-MADISON)

INFRARED COMPOSITE FROM 16 NOV 09 AT 06:00 UTC (SEC: UW-MADIS(M))

Some of the flashes are observed in cloudless regions were not detected by WWLLN

There are a lot of clouds above oceans but there are no registered events above them Length of such series reach 10 thousand kilometers which is much more longer then expected thunderstorm or clouds area crossed by satellite

Efficiency of WWLLN is less then 30% so to miss 7 events which are out of clouds regions will be $(1-0.3)^7 \approx 0.08$. At the same time in accordance to WWLLN data efficiency to detect event in cloud less regions is less then 10^{-2} per min per detector field of view, so probability to detect 7 of the same kind events is about $(10^{-2})^7$ One orbit TLE distribution recorded by TATIANA-2 micro satellite above clouds map 19 NOVEMBER 2009

Distribution in number of flashes $N_{\mbox{\scriptsize s}}$ in one series for various number of photons $Q_{\mbox{\scriptsize a}}$

Q_a/N_s	1	2	3	4	>4	Total number of flashes				
$10^{20} - 10^{22}$	202	59	48	18	49	372				
$10^{22} - 10^{23}$	118	146	128	85	222	699				
>10 ²³	44	58	56	37	103	298				

Typically only about 15 to 30% of strokes detected. These strokes are usually the stronger ones. Recent research indicates our detection efficiency for strokes about 30 kA is approximately 30% globally.

In these examples to be found less then 10 events out of clouds locations. Exposition time is 60 min, considering aria is about **S=10⁸ km²** lightning detecting probability out of cloud region is less then **10⁻⁷ min⁻¹×km²**

UV detector field of view **s=10⁵ km²** Probability to detect one lightning out of cloud region by UV detector less then **10⁻²** per min

C11-0069-10 abstract to oral talk at 38th COSPAR Scientific Assembly, 2010

38th COSPAR Scientific Assembly 2010

UV TRANSIENT FLASHES MEASURED BY "UNIVERSITETSKY-TATIANA-2" SATELLITE GEOGRAPHICAL DISTRIBUTION IN THE EQUATORIAL RE-GION AND THEIR PROBABLE IONOSPHERIC ORIGIN

The set of scientific payload on-board "Universitetsky-Tatiana-2" satellite, launched on the 17 of September, 2009, measured transient (milliseconds) flashes in the atmosphere in two wavelength bands: UV (240-400 nm) and red (610-800 nm). Global distribution of the flashes is discussed in this work. Several characteristics of this distribution are against conventionally assumed lightning origin of the transient events. Transient flashes, measured from the satellite, are frequently detected in cloudless regions. Those events are not seen by the global net of lightning radio detectors. These evidences point to their upper ionosphere origin. At the same time flashes are mainly observed above continents stretching along magnetic meridians. This fact indicates the important role of geomagnetic field and the role of electrically active zones of the continents in formation of electric field in the ionosphere. The observed absence of transient events above the Sahara Desert stresses the role of water vapor in formation of electrically active zones not only in the troposphere but also in the ionosphere.

TLE altitudes distribution recorded by TATIANA-2 above South & North America

Example of temporal profile of TLE recoded at south age of trajectory

Example of temporal profile of TLE recoded at north age of the same trajectory

Global distribution of the TLE recorded by TATIANA -2

Charged particles global distribution recorded by TATIANA -2

Transient optical phenomena differential photon number distribution in discharge point

Conjugate points: connection points Brazil & Canada

Conjugate points: Connection Brazil and Canada

1.At the time of the flash there was not detected response of electrons in SAA. In all temporal profile of the charge particle detector recoded above Brazil there were not detected any kind of bursts in the particles flux.

Example of optical signals records in UV and IR range together with signals from charge particle detector during TATIANA-2 mission

Examples of signals of charge particle detector recorded during TATIANA-2 mission in SAA

Conjugate points: connection from Brazil to Canada (downward electrons)

2.At high latitudes above the north Canada registered several flashes which emit at least $W > 10^{20}$ photons. In this region the Earth magnetic field has vertical direction and electrons move downward. Lets estimate the possibility of generation of these flashes by the flow of relativistic penetrating electrons.

Efficiency of electron to produce light is about $\eta \sim 5$ photons / m

With the average path length of ~30 kilometers each electron is emits $P = 30 \times 5 \times 1000 = 1.5 \times 10^5$ photons. In our case 10^{20} photons can be produced by $n = W / p = 10^{20} / 1.5 \times 6 \times 10^5 = 10^{14}$ electrons.

Density of the electrons in this beam with diameter of about 500 km and corresponded area S~ 10^{11} /m² will be $\rho = 10^{14}$ / $10^{11} = 10^3$ m-².

Delay time between electrons and photons from flash for satellite orbit with altitude 1000 km. will be in range 1000km × 3.3 km/msec. = 3.3ms for electrons moving along magnetic field and ~ 33 ms for electrons moving in a spiral trajectory are in range of detector recording time trace

Expected signal for such flashes in charge particle detector with area a=0.05m2 will be $\rho \times a = 0.05m^2 \times 10^3 \text{ m}^{-2} = 50$ particles, which exceeds the detector sensitivity at list two time.

But during measurement there were not find candidates for such model.

Conclusions

1. In Sun-synchronous orbit measurements along satellite trajectory observed series of the flashes which observed every day

2. Series of flashes are observed not only above clouds in thunderstorm regions, but also over cloudless ones

3. Number of flashes in series increase with increasing number of photons in flashes 4. Flashes were not observed above Sahara desert.

Also

Measurements provide:

1.No evidence find for synchronous occurrence of flashes and expected electrons generated in lighting discharge.

2.No evidence finds for influence of electric field of lighting discharge on electrons with energy greater than 1MeV in near Earth space.

3.No evidence find for flashes generated by downward electrons in conjugate points.

THANKS!