A New Detector Array for Studying TGEs in the American Midwest

Lightning Research Group, Monmouth College

R. Williams, C. Turner E. Bell, M. Anderson, B Shannon*, Z. Monti*, A. Keller* C. Fasano

Supported by NSF: AGS-1232594

Overview

- Introduction
- Thunderstorms in the American Midwest
- Studying TGEs in the Midwest
- Detector package design
- Future work and Conclusions

Where is Monmouth, IL

Google Maps

Derecho: A long-lived storm with high straight-line winds

http://www.spc.noaa.gov/misc/AbtDerechos/casepages/jun292012page.htm#

http://www.spc.noaa.gov/misc/AbtDerechos/derechofacts.htm

Tornadic

Average Annual Number of EF0-EF5 Tornadoes Per 10,000 Square Miles Averaging Period: 1991 - 2010 0.4 0.6 0.7 4.7 5.7 0.3 0.60 8 0.6 4.5 4.7 2.1 1.4 2.8 1.2 3.6.1.4 9.1 3.6 3.1 7.4 0.2 4.6 9.95.4 0.3 6.1 9.7 0.9 0.7 5.1 4.5 11.7 6.5 5.2 6.4 6.2 9 0.4 7.5 0.9 8.6 5.2 9.2 5.9 8.5 12.2 **NOAA** An average of 3.5 EF0-EF5 NOAA's 0.9 tornadoes occur per 10,000 square National Climatic Data Center miles in the United States each year

Tornadic Thunderstorms

Thunderstorms in the American Midwest have some unique properties. These unique storms raise interesting TGE questions:

- Do these storms produce TGEs with the same frequency? Do they occur as often, more often, or less often?
- Do these storms produce photons with the same energy spectrum? Are these TGEs somehow different?
- Are the processes that produce TGEs in midwestern storms the same as in other storms (like in Louisiana, or Aragats, for example)?
- Can TGEs be used to identify storms that are or will become severe, tornadic, have large hail or produce derechos?
- Can TGEs be used as a tool to examine the dynamics of these storms?

Goal: Measure TGEs and the conditions that produce them

- Measure photons (TGEs) in the energy range from a few keV to ~2 MeV
- Record lightning strikes (to match with WWLLN)
- Record pressure, temperature, and relative humidity, sound (and possibly other meteorological conditions/parameters)
- GPS timing of events (RTC backup)
- Measure E-Field

Design Considerations:

<u>Coverage</u>: Deploy as many detectors deployed as possible and detect photons from any source.

<u>Background:</u> We need to measure and or control backgrounds.

<u>Cost and reliability:</u> Many detection packages requires low cost per package

<u>Flexibility:</u> Use off-the-shelf hardware to allow the addition of additional sensors and capabilities while maintaining low cost.

A Wide-Area Array of Detectors to Measure the Energy Spectrum of TGE photons

- We have built 10 detector packages that we will be deploy over a large area in western Illinois and eastern Iowa (~100 sq. km)
- By having many detectors, we improve our ability to capture the TGE photons that are produced.
- High reliability and low cost mean that detectors can run for many years.
- A "WWLLN" for TGE detection....

Measure photons (TGEs) in the energy range from a few keV to ~2 MeV

- NaI/Photomultiplier tube combination
- Canberra NaI 2x2 (5.1 cm x 5.1cm) with PMT (8.5% resolution)
- Calibration with nearby ⁶⁰Co source while deployed

Canberra Osprey Base:

- Power over Ethernet
- Built-in MCA
- Communication over Ethernet
- External control via GPIO pins
- Data accessible via Python Libraries
- Built-in Web Server

Record lightning strikes (to match with WWLLN)

- Simple RF detector from http://www.techlib.com/electronics/lightning.html#Lightning%20Simulator
- Circuit detects broadband RF and puts out a well-defined logic pulse
- External Antenna input controls gain
- We designed a PCB board to simplify construction and make the system modular

Record pressure, temperature, and relative humidity, sound (and possibly other meteorological conditions/parameters)

Pressure-Temperature Sensor: Adafruit BMP085

- Absolute accuracy of 2.5hPa and a noise level of down to 0.03hPa (which is equivalent to an altitude change of merely 0.25m)
- Ultra low power consumption of down to $3\mu A$
- Pre-calibrated

Humidity-Temperature Sensor: Sparkfun SHT15

- Accuracy of 2% (Relative humidity)
- Power consumption of $90 \mu W @ 5 V$
- Pre-calibrated

Electret Microphone Sparkfun

• Simple Analog out microphone

• GPS timing of events (RTC backup)

GPS (I2C Bus): DSS Circuits

- GTPA010 with embedded antenna
- Low power consumption (55 mA@acquisition, 40 mA @ tracking
- Ultra-High Sensitivity
- Update rate up to 10 Hz

Real Time Clock (RTC) DS1307: Sparkfun

Measure E-Field

E-Field Mill Constructed (Ihninger et al.)

Micro ControllerArduino Mega

- Inexpensive microcontroller
- Low power consumption, digital and analog pins that can be configured for input or output
- Standardized design with open Eagle Files
- Array of options including power over ethernet
- Programmable over USB using a C like environment
- Built-in interrupt handling.

Manage the User interface/Data Recording/Talking to the Arduino

Raspberry Pi:

- 100M Ethernet
- 512 M RAM
- Linux OS (Raspbian) on SD card
- HDMI, Audio, USB ports
- Low power use
- GPIO pins
- Only \$35

Measuring TGEs: How it all fits together

Operation

- Lightning detector detects RF pulses and sends logic pulses for each strike to microcontroller (or manual start is issued).
- Microcontroller process logic pulses from the lightning detector as interrupts, recording pulse length and time of occurrence.
- Microcontroller computes a strike rate. If strike rate exceeds a preset threshold, the Microcontroller sends a logic pulse to the Canberra Osprey base to begin recording data
- When NaI/Base is triggered, sensors begin recording every time interval
- Sensors feed Arduino, which in turn writes to Raspberry Pi.
- Arduino logs data to a separate on-ethernet microSD card
- Raspberry Pi records data and updates User Interface.

Implementation: Build a Shield for the Arduino Mega

- Wanted a simple, modular design
- Easy to replace sensors
- Compact with short wire runs

"Bare" Shield

Sensors Mounted-Shield Mounted Power over Ethernet in place.

Packaging

- Water-resistant but ventilated
- Easy to Assemble
- Easy to service
- Compact and easy to transport and deploy
- Electronics in removable base cap

Packaging

- NaI crystal exposed, but remaining parts sealed
- Ventilation-small fan circulates air up through base and out ventilation tubes

Detector Design: Finished (Almost).

Conclusions and Future Work

This Summer:

- Complete 10 detector packages
- Finish Software
- Deploy at local high schools. Students assist in data collection
- Accumulate data, associate with WWLLN data

Upcoming Year-Next summer and beyond

- Accumulate data and begin analysis
- Repair and upgrade deployed detectors (additional sensors...)
- MCNP/GEANT4 modeling
- Background studies/data analysis
- Upgrade software (automated temperature control)
- Balloons with real-time communication?
- Build more!

Begin to understand TGEs in Midwestern Thunderstorms.

