Ground-based complex for detailed investigation of atmospheric transient luminous events in the optical range

G.Beskin, **S.Karpov**, V.Plokhotnichenko (SAO RAS, Russia) S.Bondar (IPI, Russia) G.Greco, A.Guarnieri, C.Bartolini (Bologna University, Italy) or

What do astronomers have in stock to share with atmospheric scientists

Wide-Field Optical Monitoring Complex

Wide-field monitoring systems: plan of the talk

- Why do astronomers need such systems?
 - Fast variability of the sky
- What have we done and reach so far
 - Our systems, our results and plans
- You, obviously, need it too
 - Sprites, elves, jets... you name it
- What do we have to offer you
 - High temporal resolution photometry, spectroscopy and polarimetry in a wide fields

Fast variability of the sky: the zoo of variable objects

closer to Earth

more energetic

Time scale	near-Earth	inside Galaxy	nearby galaxies	cosmological distances
< 0.1 s	meteors, satellites, debris	novae flaring	nearby	
1 s	high orbit satallitas	stars, stars	supernovae	GRBs
10 s	ingii-oron saterintes	occultations		
100 s			intro dore	
> 1000 s	asteroids	variable stars, MACHOs	variable AGNs	supernovae

Gray background marks the classes of objects routinely targeted by existing wide-field surveys,like ASAS, LINEAR, MACHO etc

As a rule, fast optical transients have unpredictable localizations, both in time and on the sky

Wide-Field Optical Monitoring Complex

Fast transient phenomena on the sky: Gamma-ray bursts

Most energetic events in the Universe E~10⁵¹-10⁵⁴ Erg — rest-energy of the stars

Compact objects merging and formation of a black hole

- NS+NS, NS+BH
- Orbital motion -> collimation
- Old objects in halos of old galaxies

Massive star collapse towards a black hole

- 100-150 Msun stars
- Rotation -> collimation of the ejecta
- Young objects in star formation regions
- Supernova imprints on late stages of the afterglow

TEPA- 2010, Aragatz, Armenua

Gamma-ray bursts: physical picture

BURSTING OUT

TEPA- 2010, Aragatz, Armenua

Gamma-ray bursts: what can variability tell?

- Activity of central engine
 - Periodic behaviour?
 - Flares
- Dynamics of ejecta
 - Internal shocks
 - Instabilities
 - density fluctuations
 - magnetic reconnections

• Interaction with wind and interstellar medium

Gamma-ray bursts: high-energy emission

- Studied well by space-borne telescopes
 - BATSE, HETE-II, BeppoSAX, Swift, INTEGRAL

TEPA- 2010, Aragatz, Armenua

Gamma-ray bursts: optical emission

- Open questions
 - **Prompt** afterglow transition
 - internal vs external shocks
 - Variability
 - modulation by central engine activity?
 - Relation to high-energy emission
 - multiwavelength spectrum and its variability
- To find answers, one have to look for very first moments of the burst in optics with high temporal resolution

GRB optical emission: catching the tail of the burst

Wide-Field Optical Monitoring Complex

GRB optical emission: catching the tail of the burst

20 detections during gamma emission, 15 upper limits (14-22^m)

Wide-Field Optical Monitoring Complex

GRB optical emission: independent search for optical transients

- Need wide field of view
 - the shorter the focus the better
- Need good detection limit
 - the larger the diameter the better
- Need high temporal resolution
 - short exposures and fast read-out
 - low read-out noise

Need real-time transient detection software

contradictory requirements

Independent search for optical transients: compromise solution

- Objective with large D/F (~1)
 - Large diameter
 - Relatively small focal length
- Fast CCD
 - Good frame rate (up to 10 fps)
 - Significant read-out noise
- Scaling image intensifier
 - Further reduces the focal length
 - Overcomes the read-out noise

Independent search for optical transients: FAVOR

FAVOR (FAst Variability Optical Registrator) camera — SAO RAS, since 2003 Built in collaboration with IPI and IKI (Moscow), supported by CRDF grant

Independent search for optical transients: TORTORA

Telescopio Ottimizzato per la Ricerca Dei Transienti Ottici Rapidi

Two-telescope complex:

- independent detection
- automatic study

La-Silla, Chile mounted on REM since 2006

Team: SAO RAS, IPI (Russia), Bologna University, REM (Italy)

Wide-Field Optical Monitoring Complex

FAVOR & TORTORA systems: technical details

Data flow rate — 20 Mb/s, per night— 600 Gb, ~200.000 frames

Wide-Field Optical Monitoring Complex

FAVOR & TORTORA systems: hardware & software

TEPA- 2010, Aragatz, Armenua

FAVOR & TORTORA systems: real-time data processing

- Fast differential imaging for detection of transients
- Simple classification of transients
 - Meteors bright, fast and elongated
 - Satellites slowly move across the field
 - Satellite flashes do not move, but spatially coincident with satellite catalogue positions
 - Star flickering positions near catalogue stars
 - Astrophysical flashes everything else

3 consecutive frames (0.4s) is enough for classification

Independent search for optical transients: systems all around the world

Name	Field of View (degrees)	Exposure (seconds)	Limit
WIDGET	62x62	5	10
RAPTOR A/B	40x40	60	12
RAPTOR Q	180x180	10	10
BOOTES	16x11	30	12
Pi of the Sky	33x33	10	10.5
AROMA-W	25x35	5-100	10.5-13
MASTER-VWF	20x21	5	11.5
MASTER-Net	30x30	1	9
FAVOR	17x24	0.13	10-11.5
TORTORA	24x32	0.13	9-10.5

Only general-purpose systems are listed. There are also a lot of specialized (like meteor cameras) or narrow-field (like LINEAR) monitoring projects around the world.

And we indeed had success with it

Independent search for optical transients: triumph of monitoring systems

- GRB 080319a:
- GRB 080319b:
- GRB 080319c:
- GRB 080319d:
- GRB 080320:

$T_0 = 05:45:41 \text{ UT},$	T ₉₀ ∼40 s,	R~21 [™]
T ₀ = 06:12:49 UT,	T ₉₀ ∼60 s,	V~5.5 ^m
T ₀ = 12:25:55 UT,	T ₉₀ ∼20 s,	R~17 ^m
T ₀ = 17:05:19 UT,	T ₉₀ ∼24 s,	V~19 ^m
$T_0 = 04:37:38$ UT,	T ₉₀ ∼25 s,	I' ~23 ^m

TEPA- 2010, Aragatz, Armenua

Naked-Eye Burst: optical emission in real-time

GRB 080319B — the brightest burst ever seen, and the only one detected independently by optical monitoring systems

The only completely simultaneous high temporal resolution observations of GRB optical emission (TORTORA camera)

Naked-Eye Burst: optical emission in real-time

The first and the only completely simultaneous high temporal resolution observations of GRB optical emission

Time since trigger, sec

The first and the only completely simultaneous high temporal resolution observations of GRB optical emission

Wide-Field Optical Monitoring Complex

Naked-Eye Burst: periodicities in optical emission

TEPA- 2010, Aragatz, Armenua

Gamma-ray bursts: lessons from the Naked-Eye Burst

- Peaked at V~5.3 m
- Fast optical variability
- ~9 seconds four peaks
- ~1 second around last peak
- Simultaneous start and end
- 0.82 correlation with 2 s optical delay
- Rules out large subset of theoretical models, like External Shock and Inverse Compton ones

Naked-Eye Burst demonstrated the importance of high temporal resolution in optical study of GRBs

Wide-Field Optical Monitoring Complex

Independent search for optical transients: moving on after the Naked-Eye Burst

- Increase field of view
- Improve the detection limit
- Keep (or improve) the temporal resolution
- Acquire (some) spectral information
 - multicolor imaging
 - low-resoluiton spectroscopy
- Measure the polarization

Independent search for optical transients: what are we building now

- Multi-objective design
- Independent pointing of each channel
- Installable color/polarization filters
 As a result:
- Wide field of view in monitoring mode
- Simultaneous multi-color and polarimetric measurements in follow-up mode

TORTORA x 9 = MiniMegaTORTORA

Independent search for optical transients: what are we building now

TORTORA x 9 = MiniMegaTORTORA

Wide-Field Optical Monitoring Complex

CANON EF85/1.2		Image Intensifier	TV-CCD CSDU285	
Diameter:	71 mm	Photocathode: GaAs	Chip: SONY 2/3" IXL285 interline	
Focal Length:	85 mm	Diameter: 17.5 мм	Size: 1388x1036 pixels	
D/F:	1/1.2	Gain: 40000	Pixel: 6.45x6.45um	
Field of View:	10 deg	Scaling: 1/1	Exposure: 0.128 — 10 s	
		QE: 30% at 4500AA	Angular resolution: 30-40"/pix	

- Celostate for fast repointing, +/- 20 degrees
- Installable BVR and polarimetric filters
- Image intensifier and fast CCD

Johnson-Morgan photometric system

B = 4400 +/- 490 A V = 5500 +/- 445 A R = 7000 +/- 1100 A

MiniMegaTORTORA: software

- Real-time data processing
 - Transient detection and classification in 0.4 s
- Complex as a whole
 - Follow-up of detected transients
 - Regular all-sky survey on different time scales
- Data products
 - Transient alerts for global networks
 - High-resolution data on detected transients
 - All-sky photometric variability catalogue

MiniMegaTORTORA: single channel software

MiniMegaTORTORA: central server software

MiniMegaTORTORA: performance

Wide-field monitoring

- ~900 square degrees field of view
- ~12.5^m limit in B filter for 0.13s
- ~14^m for 13s, ~17.5^m for 1300 s

Narrow-field follow-up

~100 square degrees field of view

Timescale	B filter	B + 3 polarizations	BVR	BVR + 3 polarizations
0.13	13.7	11.0	13.0	10.5
13	16.2	13.2	15.5	13.0
1300	18.7	15.9	18.0	15.5

Wide-Field Optical Monitoring Complex

Temporal resolution, seconds

MiniMegaTORTORA: first light / Jun 2010

FOV 10 x 8 degrees, limit down to B~12.0 in 0.13 s

Wide-Field Optical Monitoring Complex

MiniMegaTORTORA: where to settle it down

Global distribution of lightning April 1995-February 2003 from the combined observations of the NASA OTD (4/95-3/00) and LIS (1/98-2/03) instruments.

Independent search for optical transients: and what about TLEs?

Phenomenology

- Upper-atmospheric events above thunder fronts — elves, sprites, jets
 - Timescales down to nanoseconds
 - but only 10⁻⁴ s does really matter
 - Spatial scales down to tens of meters
 - Accelerated electrons, nonthermal emission?..
 - Variable spectrum
 - Polarization???

Transient Luminous Events: how do you observe it?

- Satellites nadir mode (ISS, Tatiana, ...)
 - Loses vertical structure
- Satellites tangential mode (ISUAL, ...)
 - Low spatial resolution due to large distance
- Ground-based PM arrays (PIPER, ...)
 - Low spatial resolution
- Ground-based video cameras (ILAN, ...)
 - Low temporal resolution
- Ground-based fast imagers (Fairbanks, ..)

Transient Luminous Events: is MiniMegaTORTORA of any help here?

- Moderately large field of view
- Good spatial resolution
- Independent, autonomous operation
- Simultaneous color and polarimetric information
- Temporal resolution?
 - Use faster detectors with lower readout noise
 - EM-CCD
 - Intensified CMOS

MiniMegaTORTORA: detectors for better temporal resolution

- Electron-Multiplying CCDs
 - up to 1024x1024, 13um pixel
 - read-out noise reduction due to charge multiplication

Andor iXon⁺888

- frame rates from 10 (full) till 1k (64x64)
- CMOS sensors
 - up to 4096x4096
 - fps from 2k (full) till 100k (64x64)
 - large read-out noise
 - may be reduced by image intensifier

Photron FASTCAM APX-i2

MiniMegaTORTORA: modification for TLE observations

Intensified CMOS

71 mm	Chip: F	Photron FASTCAM ultima APX-i2
85 mm	Size:	1024x1024 pixels
1/1.2	Pixel:	17x17um
10 deg	Frame rate	e: 2000 (full) – 100000 (128x32)
41"/pixel	QE:	up to 50%, 4000-7000A

8 Gb internal buffer, ~3 s (6000 frames) coverage. External trigger to download to PC.

Wide-Field Optical Monitoring Complex

CANON EF85/1.2

Diameter:

D/F:

Focal Length:

Field of View:

Resolution:

Transient Luminous Events: how bright are they?

Detection limit (S/N=5) vs temporal resolution for 17 um pixel, D=7 cm and F=8.5 cm

TEPA- 2010, Aragatz, Armenua

Transient Luminous Events: spatial scales

Spatial resolution and field of view for 1024 x 1024 detector with 17 um pixel

Transient Luminous Events: observing with MiniMegaTORTORA

Wide field, single color

No filters or one filter

Medium field, three colors

Color filters

Narrow field, three colors, three polarizations

Color + pol. filters

Wide-Field Optical Monitoring Complex

Transient Luminous Events: observing with MiniMegaTORTORA

Narrow field, low-resolution (r~20-100) panoramic spectra

Several images with different orientation of objective prisms

Wide-Field Optical Monitoring Complex

MiniMegaTORTORA for TLE observations: summary

- Provides good spatial resolution and coverage
- Allows to observe TLEs in different modes
 - Wide-field, single color for near-by thunders
 - Narrow-field, three colors and polarizations for distant events
- May be easily adapted to provide good temporal resolution
 - FPS up to 2k-10k with full resolution and FOV
 - FPS up to 100k with limited spatial resolution

MiniMegaTORTORA for TLE observations: summary

- Able to acquire panoramic spectra with objective prisms
 - Different orientations reconstruction of field
 - Simultaneous polarimetry?..
- Able to detect and measure transients
 autonomously
 - We have software for astronomical / near-earth transient detection and classification. It works.
 - Adaptation for atmospheric ones is straightforward

MiniMegaTORTORA for TLE observations: summary

That's all about our wide-field efforts

Transient Luminous Events: as seen by 6-m telescope

SAO RAS, Russian 6-m telescope, position sensitive photon-counter, 15" field

Thank you

Independent search for optical transients: re-using existing hardware?..

Large telescopes with «bad» mirrors (Beskin et al, 1999)

- Size: 10-30 m
- Detectors: 10-1000 PMT (< 1us)
- FOV: 10-20 square degrees
- Angular resolution: 5-30 arcmin
- Limit: up to 18^m for 1ms

Cerenkov telescopes (MAGIC, H.E.S.S., VERITAS...) Solar concentrators (PETAL, ...)

Wide-Field Optical Monitoring Complex