Gamma/hadron separation for water Cherenkov EAS detectors on the basis of multidimensional feature space using non parametric approach V.Grabski<sup>1</sup>, A.Vardanyan<sup>2</sup>, A.Chilingarian<sup>2</sup> 1 Universidad Nacional Autónoma de Mexico, Mexico 2 Yerevan Physics Institute, Armenia

Introduction

Features for gamma/hadron separation

Simulation and data processing

Single parameter (feature) analysis - simple cut method

Non parametric algorithms

Results

Conclusions

Acknowledgments

## Introduction

- Two main methods for the gamma hadron separation could be mentioned:
- Based on the difference of gamma and hadronic showers topology(the size and particle density).
- Detection of muons inside the shower (this is effective above a few TeVs energy); below 1TeV 10-15% hadronic showers don't include muons (From CORSIKA).
- Tibet AS MD: both methods can be combined, as they will have clean muon detection.
- HAWC: there is no clean muon detection, but a large signal outside the shower core mostly comes from the muons.

# Variables for the gamma/proton separation

- Simulation and data processing was described in previous presentation. Here it should be mentioned that for the core position was used the Parzen algorithm (see previous presentation).
- Milagro Ntank(PE>cut)/PEmax(R>40m)-large signals outside the core region; assuming that large signals come from muons. In parallel also Ntank(PE>cut)/PEmax(R>0m) has been considered.
- > ERN  $\Sigma$ (R\*PE(R>40m))/Ntank(PE>cut): one can expect more large signals outside 40m radius circle for hadron showers due to muons and  $\pi^0$ . Division on Ntank for the normalization purpose.
- > EmRN Rmax\*PEmax(R>40m)/Ntank(PE>cut) this is similar to milagro variable only it amplifies if large signal has large distances(again due to muons and  $\pi^0$ ).

#### Distributions of the variables trigger > 30, 50-10000GeV; core position is inside an area: 500x500m2



#### Distributions of the variables trigger > 30, 50-10000GeV; core position is inside the detector area



Single parameter (feature) analysis - simple cut method later on is used data in large area for statistical reason only



#### Correlations between the features (large area)



#### Correlations between the features (detector area)



#### Many of TMVA non parametric algorithms have been used and 5 of them have better performance for this task

- Rectangular cuts The RC based on the usage of an ensemble of rectangular cuts on discriminating variables.
- Artificial Neural Networks (ANN nonlinear discriminant analysis)two different realizations of ANN have been used (ANI-ANN from ANI program package and TMLP-ANN from TMVA ROOT program package).
- Support Vector Machine (SVM)-The main idea of the SVM approach to classification problems is to build a hyperplane that separates signal and background vectors (events) using only a minimal subset of all training vectors (support vectors). The position of the hyperplane is obtained by maximizing the distance between the vector to be classified and the support vectors.

• **Boosted Decision Trees** (BDT)-A decision tree (BDT) is a binary tree structured classifier similar to the one sketched in Fig. Repeated left/right (yes/no) decisions are taken on one single variable at a time until a stop criterion is fulfilled.



• **Predictive learning via rule ensembles** (RuleFit)-Friedman-Popescu's RuleFit method uses an ensemble of so-called rules create a scoring function with good classification power. Each rule defined by a sequence of cuts, such as:

 $r1(x) = I(x_1 > 100.0) . I(x_3 < 40.0)$ 

 $r2(x) = I(0.45 \le x_4 \le 1.0) \cdot I(x_1 \ge 150.0)$ 

r3(x)=....., where the  $x_i$  are discriminating input variables, and I(:::) returns the truth of its argument. A rule applied on a given event is non-zero only if all of its cuts are satisfied, in which case the rule returns 1.

## Results:ANI\_ANN



## All together



### Correlations between variables



## Conclusions

- Obtained features are good enough for the simple cut usage. There are correlations between the features, so non linear algorithms should be used.
- The use of all features together demonstrate some improvement in discrimination performance.
- For better performance it should be found a feature that has good performance for the discrimination and is not correlated with one of the used features or the correlation is significantly different for two classes.

#### Acknowledgments

The author is grateful to Yerevan physics institute to spent a sabbatical year in YerPhi and PASPA DGAPA of UNAM for a partial financial support.